469 research outputs found

    Polarizing Lamp

    Get PDF
    A polarizing lamp includes a polarization beam splitter, a metallic grating reflector having metallic gratings with a trapezoidal profile, and an unpolarized light source positioned between the polarization beam splitter and the metallic grating reflector

    Wide-Angle and Broadband Polarization Converter

    Get PDF
    Apparatus and methods for a polarization converter comprising a polarization beam splitter for receiving an input light beam and allows a transverse magnetic to pass through the polarization beam splitter and reflects a transverse electric wave and a diffraction grating having a reflectivity and polarization convertible grating for receiving the transverse electric wave reflects back a reflected transverse electric wave having a polarization rotation. The broadband wide-angle polarization beam splitter can be alternative optical elements such as a prism or an optical device having multi-layered films. The diffraction grating can be a diffraction grating having alternating parallel protrusions and recesses, metallic diffraction grating, metal-coated diffraction grating, metal-coated multi-layered diffraction grating, non-metallic reflective material surface grating, volume grating, a multi-layer grating, diffractive grating having sub-wavelength grating periods or diffractive grating h

    Liquid Crystal Display with Different Twisting Directions of Liquid Crystal Molecules

    Get PDF
    A liquid crystal display includes a first alignment film having a first alignment direction, a second alignment film having a second alignment direction, and a liquid crystal layer having liquid crystal molecules between the first and second alignment films. The liquid crystal layer is doped with a chiral material that tends to induce a first twist in directors of the liquid crystal molecules when an electric field is applied to the liquid crystal layer. The first and second alignment films have orientations that tends to induce a second twist in the directors when an electric field is applied to the liquid crystal layer, in which the direction of the first twist is different from the direction of the second twist

    Fidelity-Enriched Contrastive Search: Reconciling the Faithfulness-Diversity Trade-Off in Text Generation

    Full text link
    In this paper, we address the hallucination problem commonly found in natural language generation tasks. Language models often generate fluent and convincing content but can lack consistency with the provided source, resulting in potential inaccuracies. We propose a new decoding method called Fidelity-Enriched Contrastive Search (FECS), which augments the contrastive search framework with context-aware regularization terms. FECS promotes tokens that are semantically similar to the provided source while penalizing repetitiveness in the generated text. We demonstrate its effectiveness across two tasks prone to hallucination: abstractive summarization and dialogue generation. Results show that FECS consistently enhances faithfulness across various language model sizes while maintaining output diversity comparable to well-performing decoding algorithms.Comment: Accepted as a short paper at EMNLP 202

    Liquid Crystal Display

    Get PDF
    A display includes pixel circuits, each pixel circuit including a first electrode, a second electrode, a third electrode, and a liquid crystal layer doped with a chiral material. The first electric is electrically coupled to a first reference voltage. The second electrode receives a pixel voltage corresponding to a gray scale level, the second electrode including a conducting layer having openings. The third electrode is electrically coupled to a second reference voltage. The second electrode is between the first and third electrodes, and the liquid crystal layer is between the first and second electrodes

    Wide Viewing Angle Transflective Liquid Crystal Display.

    Get PDF
    Apparatus, methods and systems for a transmissive liquid crystal display including a plurality of pixel circuits, each pixel circuit including a reflective region and a transmissive region. The reflective region includes a polarization dependent reflector for reflecting ambient light. The reflective and transmissive regions include an initially homogeneously aligned liquid crystal layer sandwiched between a first and a second substrate. Each pixel further includes at lease one first transparent electrode as the common electrode and at least one second transparent electrode as the pixel electrode both formed on one of the same first and second substrates, wherein substantial fringe fields with rich horizontal electric fields are generated in the liquid crystal layer when voltage is applied to the pixel electrode, making the liquid crystal molecules rotate mainly in the horizontal direction to achieve wide viewing angle

    Multi-domain vertical alignment liquid crystal displays with improved angular dependent gamma curves.

    Get PDF
    Methods, systems and apparatus for a liquid crystal display panel having a first substrate with a color filter, an over-coating and a common electrode. The second substrate includes an insulating layer surface facing the first substrate, a pixel electrode, a plurality of common and pixel domain guides formed on the common and the pixel electrodes, a plurality of electric shields on one of the common or pixel electrodes and a liquid crystal layer vertically aligned between the first and second substrates. The panel also includes a drive circuit for applying a voltage to generate an electric field to control liquid crystal molecule orientation corresponding to the plurality of domain guides and electric shields to form a multi-domain liquid crystal display panel device. The plural domain guides are either protrusions or slits formed in the common electrode and the pixel electrode to form the multi-domain vertical alignment liquid crystal device

    Transflective Liquid Crystal Display Comprising A Dielectric Layer Between The First And Second Electrodes In The Transmissive Region

    Get PDF
    A display includes a plurality of pixel circuits, each pixel circuit including a first electrode, a second electrode, a reflective region, and a transmissive region. The reflective region reflects ambient light and includes a first portion of a liquid crystal layer and a polarization dependent reflector. The transmissive region transmits backlight and includes a second portion of the liquid crystal layer. A dielectric layer is between the first and second electrodes in one of the reflective region and the transmissive region, the dielectric layer configured such that when a pixel voltage is applied to the first and second electrodes, the percentage of the pixel voltage applied across the first portion of the liquid crystal layer is different from the percentage of the pixel voltage applied across the second portion of the liquid crystal layer. The display includes a backlight module to generate the backlight

    Decoration of graphene nanoribbons by 5d5d transition-metal elements

    Full text link
    Graphene is a famous truly two-dimensional (2D) material, possessing a cone-like energy structure near the Fermi level and treated as a gapless semiconductor. Its unique properties trigger researchers to find applications of it. The gapless feature shrinks the development of graphene nanoelectronics. Making one-dimensional (1D) strips of graphene nanoribbons (GNRs) could be one of the promising routes to modulating the electronic and optical properties of graphene. The electronic and optical properties of GNRs are highly sensitive to the edge and width. The tunability in electronic and optical properties further implies the possibilities of GNR application. However, the dangling bonds at ribbon edges remain an open question in GNR systems. Various passivation at the ribbon edge might change the essential physical properties. In this work, 5d5d transition-metal elements are considered as the guest atoms at the edges. The geometric structure, energy bands, density of states, charge distribution, and optical transitions are discussed

    Transflective LCD with Reflective Layer Connected to Reference Voltage Greater than 0.5 VRMS and Less than LC Threshold Voltage

    Get PDF
    A transflective display includes pixels each including a first electrode, a second electrode, a liquid crystal layer associated with the first and second electrodes, and a conductive reflective layer between the liquid crystal layer and the second electrode to reflect ambient light. The conductive reflective layer is insulated from the second electrode and covers less than all of the second electrode to allow backlight to be transmitted through a portion of the pixel not covered by the conductive reflective layer
    corecore