1,589,204 research outputs found
Learning to Identify Ambiguous and Misleading News Headlines
Accuracy is one of the basic principles of journalism. However, it is
increasingly hard to manage due to the diversity of news media. Some editors of
online news tend to use catchy headlines which trick readers into clicking.
These headlines are either ambiguous or misleading, degrading the reading
experience of the audience. Thus, identifying inaccurate news headlines is a
task worth studying. Previous work names these headlines "clickbaits" and
mainly focus on the features extracted from the headlines, which limits the
performance since the consistency between headlines and news bodies is
underappreciated. In this paper, we clearly redefine the problem and identify
ambiguous and misleading headlines separately. We utilize class sequential
rules to exploit structure information when detecting ambiguous headlines. For
the identification of misleading headlines, we extract features based on the
congruence between headlines and bodies. To make use of the large unlabeled
data set, we apply a co-training method and gain an increase in performance.
The experiment results show the effectiveness of our methods. Then we use our
classifiers to detect inaccurate headlines crawled from different sources and
conduct a data analysis.Comment: Accepted by IJCAI 201
Determining the luminosity function of Swift long gamma-ray bursts with pseudo-redshifts
The determination of luminosity function (LF) of gamma-ray bursts (GRBs) is
of an important role for the cosmological applications of the GRBs, which is
however hindered seriously by some selection effects due to redshift
measurements. In order to avoid these selection effects, we suggest to
calculate pseudo-redshifts for Swift GRBs according to the empirical L-E_p
relationship. Here, such a  relationship is determined by reconciling
the distributions of pseudo- and real redshifts of redshift-known GRBs. The
values of E_p taken from Butler's GRB catalog are estimated with Bayesian
statistics rather than observed. Using the GRB sample with pseudo-redshifts of
a relatively large number, we fit the redshift-resolved luminosity
distributions of the GRBs with a broken-power-law LF. The fitting results
suggest that the LF could evolve with redshift by a redshift-dependent break
luminosity, e.g., L_b=1.2\times10^{51}(1+z)^2\rm erg s^{-1}. The low- and
high-luminosity indices are constrained to 0.8 and 2.0, respectively. It is
found that the proportional coefficient between GRB event rate and star
formation rate should correspondingly decrease with increasing redshifts.Comment: 5 pages, 5 figures, accepted for publication in ApJ
Quantum nondemolition measurements of a flux qubit coupled to a noisy detector
We theoretically study the measurement-induced dephasing caused by back
action noise in quantum nondemolition measurements of a superconducting flux
qubit which is coupled to a superconducting quantum interference device
(SQUID). Our analytical results indicate that information on qubit flows from
qubit to detector, while quantum fluctuations which may cause dephasing of the
qubit also inject to qubit. Furthermore, the measurement probability is
frequency dependent in a short time scale and has a close relationship with the
measurement-induced dephasing. When the detuning between driven and bare
resonator equals coupling strength, we will access the state of qubit more
easily. In other words, we obtain the maximum measurement rate. Finally, we
analyzed mixed effect caused by coupling between non-diagonal term and external
variable. We found that the initial information of qubit is destroyed due to
quantum tunneling between the qubit states.Comment: 6 pages, 3 figure
Protein folding tames chaos
Protein folding produces characteristic and functional three-dimensional
structures from unfolded polypeptides or disordered coils. The emergence of
extraordinary complexity in the protein folding process poses astonishing
challenges to theoretical modeling and computer simulations. The present work
introduces molecular nonlinear dynamics (MND), or molecular chaotic dynamics,
as a theoretical framework for describing and analyzing protein folding. We
unveil the existence of intrinsically low dimensional manifolds (ILDMs) in the
chaotic dynamics of folded proteins. Additionally, we reveal that the
transition from disordered to ordered conformations in protein folding
increases the transverse stability of the ILDM. Stated differently, protein
folding reduces the chaoticity of the nonlinear dynamical system, and a folded
protein has the best ability to tame chaos. Additionally, we bring to light the
connection between the ILDM stability and the thermodynamic stability, which
enables us to quantify the disorderliness and relative energies of folded,
misfolded and unfolded protein states. Finally, we exploit chaos for protein
flexibility analysis and develop a robust chaotic algorithm for the prediction
of Debye-Waller factors, or temperature factors, of protein structures
- …
