679 research outputs found
Changes in the prevalence, treatment and control of hypertension in Germany? : a clinical-epidemiological study of 50.000 primary care patients
INTRODUCTION: Medical societies have developed guidelines for the detection, treatment and control of hypertension (HTN). Our analysis assessed the extent to which such guidelines were implemented in Germany in 2003 and 2001.
METHODS: Using standardized clinical diagnostic and treatment appraisal forms, blood pressure levels and patient questionnaires for 55,518 participants from the cross-sectional Targets and Essential Data for Commitment of Treatment (DETECT) study (2003) were analyzed. Physician's diagnosis of hypertension (HTN(doc)) was defined as coding hypertension in the clinical appraisal questionnaire. Alternative definitions used were physician's diagnosis or the patient's self-reported diagnosis of hypertension (HTN(doc,pat)), physician's or patient's self-reported diagnosis or a BP measurement with a systolic BP≥140 mmHg and/or a diastolic BP≥90 (HTN(doc,pat,bp)) and diagnosis according to the National Health and Nutrition Examination Survey (HTN(NHANES)). The results were compared with the similar German HYDRA study to examine whether changes had occurred in diagnosis, treatment and adequate blood pressure control (BP below 140/90 mmHg) since 2001. Factors associated with pharmacotherapy and control were determined.
RESULTS: The overall prevalence rate for hypertension was 35.5% according to HTN(doc) and 56.0% according to NHANES criteria. Among those defined by NHANES criteria, treatment and control rates were 56.0% and 20.3% in 2003, and these rates had improved from 55.3% and 18.0% in 2001. Significant predictors of receiving antihypertensive medication were: increasing age, female sex, obesity, previous myocardial infarction and the prevalence of comorbid conditions such as coronary heart disease (CHD), hyperlipidemia and diabetes mellitus (DM). Significant positive predictors of adequate blood pressure control were CHD and antihypertensive medication. Inadequate control was associated with increasing age, male sex and obesity.
CONCLUSIONS: Rates of treated and controlled hypertension according to NHANES criteria in DETECT remained low between 2001 and 2003, although there was some minor improvement
Determination of yolk contamination in liquid egg white using Raman spectroscopy
Purified egg white is an important ingredient in a number of baked and confectionary foods because of its foaming properties. However, yolk contamination in amounts as low as 0.01% can impede the foaming ability of egg white. In this study, we used Raman spectroscopy to evaluate the hypothesis that yolk contamination in egg white could be detected based on its molecular optical properties. Yolk contaminated egg white samples (n = 115) with contamination levels ranging from 0% to 0.25% (on weight basis) were prepared. The samples were excited with a 785 nm laser and Raman spectra from 250 to 3,200 cm−1 were recorded. The Raman spectra were baseline corrected using an optimized piecewise cubic interpolation on each spectrum and then normalized with a standard normal variate transformation. Samples were randomly divided into calibration (n = 77) and validation (n = 38) data sets. A partial least squares regression (PLSR) model was developed to predict yolk contamination levels, based on the Raman spectral fingerprint. Raman spectral peaks, in the spectral region of 1,080 and 1,666 cm−1, had the largest influence on detecting yolk contamination in egg white. The PLSR model was able to correctly predict yolk contamination levels with an R2 = 0.90 in the validation data set. These results demonstrate the capability of Raman spectroscopy for detection of yolk contamination at very low levels in egg white and present a strong case for development of an on-line system to be deployed in egg processing plants
Photoreceptor spectral tuning by colorful, multilayered facet lenses in long-legged fly eyes (Dolichopodidae)
The facet lenses of the compound eyes of long-legged flies (Dolichopodidae) feature a striking, interlaced coloration pattern, existing of alternating rows of green-yellow and orange-red reflecting facets, due to dielectric multilayers located distally in the facet lenses (Bernard and Miller. Invest Ophthalmol 7:416-434 (1968). We investigated this phenomenon in the dolichopodid Dolichopus nitidus by applying microspectrophotometry, electron microscopy and optical modeling. The measured narrow-band reflectance spectra, peaking at similar to 540 and similar to 590 nm with bandwidth similar to 105 nm, are well explained by a refractive index oscillating sinusoidally in six periods around a mean value of about 1.44 with amplitude 0.6. The facet lens reflectance spectra are associated with a spectrally restricted, reduced transmittance, which causes modified spectral sensitivities of the underlying photoreceptors. Based on the modeling and electroretinography of the dolichopodid Condylostylus japonicus we conjecture that the green and orange facets narrow the spectral bandwidths of blue and green central photoreceptors, respectively, thus possibly improving color and/or polarization vision.</p
Nonmagnetic-Defect-Induced Magnetism in Graphene
It is shown that a strong impurity potential induces short-range
antiferromagnetic (ferrimagnetic) order around itself in a Hubbard model on a
half-filled honeycomb lattice. This implies that short-range magnetic order is
induced in monolayer graphene by a nonmagnetic defect such as a vacancy with
full hydrogen termination or a chemisorption defect.Comment: 5 pages, 8 figure
Recommended from our members
Cooperative monitoring and its role in regional security
Cooperative monitoring systems can play an important part in promoting the implementation of regional cooperative security agreements. These agreements advance the national security interests of the United States in a post Cold War environment. Regional issues as widely varying as nuclear nonproliferation, trade and environmental pollution can be the source of tensions which may escalate to armed conflict which could have global implications. The Office of National Security Policy Analysis at the US Department of Energy (DOE) has an interest in seeking ways to promote regional cooperation that can reduce the threats posed by regional conflict. DOE technologies and technical expertise can contribute to developing solutions to a wide variety of these international problems. Much of this DOE expertise has been developed in support of the US nuclear weapons and arms control missions. It is now being made available to other agencies and foreign governments in their search for regional security and cooperation. This report presents two examples of interest to DOE in which monitoring technologies could be employed to promote cooperation through experimentation. The two scenarios include nuclear transparency in Northeast Asia and environmental restoration in the Black Sea. Both offer the potential for the use of technology to promote regional cooperation. The issues associated with both of these monitoring applications are presented along with examples of appropriate monitoring technologies, potential experiments and potential DOE contributions to the scenarios
In-plane magnetic anisotropy of Fe atoms on BiSe(111)
The robustness of the gapless topological surface state hosted by a 3D
topological insulator against perturbations of magnetic origin has been the
focus of recent investigations. We present a comprehensive study of the
magnetic properties of Fe impurities on a prototypical 3D topological insulator
BiSe using local low temperature scanning tunneling microscopy and
integral x-ray magnetic circular dichroism techniques. Single Fe adatoms on the
BiSe surface, in the coverage range are heavily relaxed
into the surface and exhibit a magnetic easy axis within the surface-plane,
contrary to what was assumed in recent investigations on the opening of a gap.
Using \textit{ab initio} approaches, we demonstrate that an in-plane easy axis
arises from the combination of the crystal field and dynamic hybridization
effects.Comment: 5 pages, 3 figures, typos correcte
Gate-Controlled Ionization and Screening of Cobalt Adatoms on a Graphene Surface
We describe scanning tunneling spectroscopy (STS) measurements performed on
individual cobalt (Co) atoms deposited onto backgated graphene devices. We find
that Co adatoms on graphene can be ionized by either the application of a
global backgate voltage or by the application of a local electric field from a
scanning tunneling microscope (STM) tip. Large screening clouds are observed to
form around Co adatoms ionized in this way, and we observe that some intrinsic
graphene defects display a similar behavior. Our results provide new insight
into charged impurity scattering in graphene, as well as the possibility of
using graphene devices as chemical sensors.Comment: 19 pages, 4 figure
Electron waves in chemically substituted graphene
We present exact analytical and numerical results for the electronic spectra
and the Friedel oscillations around a substitutional impurity atom in a
graphene lattice. A chemical dopant in graphene introduces changes in the
on-site potential as well as in the hopping amplitude. We employ a T-matrix
formalism and find that disorder in the hopping introduces additional
interference terms around the impurity that can be understood in terms of
bound, semi-bound, and unbound processes for the Dirac electrons. These
interference effects can be detected by scanning tunneling microscopy.Comment: 4 pages, 7 figure
- …