9 research outputs found

    Direct transport across the plasma membrane of mammalian cells of Leishmania HASPB as revealed by a CHO export mutant

    Get PDF
    Leishmania HASPB is a lipoprotein that is exported to the extracellular space from both Leishmania parasites and mammalian cells via an unconventional secretory pathway. Exported HASPB remains anchored in the outer leaflet of the plasma membrane mediated by myristate and palmitate residues covalently attached to the N-terminal SH4 domain of HASPB. HASPB targeting to the plasma membrane depends on SH4 acylation that occurs at intracellular membranes. How acylated HASPB is targeted to the plasma membrane and, in particular, the subcellular site of HASPB membrane translocation is unknown. In order to address this issue, we screened for clonal CHO mutants that are incapable of exporting HASPB. A detailed characterization of such a CHO mutant cell line revealed that the expression level of the HASPB reporter molecule is unchanged compared to CHO wild-type cells; that it is both myristoylated and palmitoylated; and that it is mainly localized to the plasma membrane as judged by confocal microscopy and subcellular fractionation. However, based on a quantitative flow cytometry assay and a biochemical biotinylation assay of surface proteins, HASPB transport to the outer leaflet of the plasma membrane is largely reduced in this mutant. From these data, we conclude that the subcellular site of HASPB membrane translocation is the plasma membrane as the reporter molecule accumulates in this location when export is blocked. Thus, these results allow us to define a two-step process of HASPB cell surface biogenesis in which SH4 acylation of HASPB firstly mediates intracellular targeting to the plasma membrane. In a second step, the plasma membrane-resident machinery, which is apparently disrupted in the CHO mutant cell line, mediates membrane translocation of HASPB. Intriguingly, the angiogenic growth factor FGF-2, another protein secreted by unconventional means, is shown to be secreted normally from the HASPB export mutant cell line. These observations demonstrate that the export machinery component defective in the export mutant cell line functions specifically in the HASPB export pathway

    A dual SILAC proteomic labeling strategy for quantifying constitutive and cell-cell induced protein secretion

    No full text
    Recent evidence suggests that the extracellular protein milieu is much more complex than previously assumed as various secretome analyses from different cell types described the release of hundreds to thousands of proteins. The extracellular function of many of these proteins has yet to be determined particularly in the context of three-dimensional tissues with abundant cell-cell contacts. Toward this goal, we developed a strategy of dual SILAC labeling astroc-ytic cultures for in silico exclusion of unlabeled proteins from serum or neurons used for stimulation. For constitutive secretion, this strategy allowed the precise quantification of the extra-to-intracellular protein ratio of more than 2000 identified proteins. Ratios covered 4 orders of magnitude indicating that the intracellular vs extracellular contributions of different proteins can be variable. Functionally, the secretome of labeled forebrain astrocytic cultures specifically changed within hours after adding unlabeled, "physiological" forebrain neurons. "Non-physiological" cerebellar hindbrain neurons, however, elicited a different, highly repulsive secretory response. Our data also suggest a significant association of constitutive secretion with the classical secretion pathway and regulated secretion with unconventional pathways. We conclude that quantitative proteomics can help to elucidate general principles of cellular secretion and provide functional insight into the abundant extracellular presence of proteins

    Phenotypic profiling of the human genome reveals gene products involved in plasma membrane targeting of SRC kinases.

    Get PDF
    Contains fulltext : 97222.pdf (publisher's version ) (Open Access)SRC proteins are non-receptor tyrosine kinases that play key roles in regulating signal transduction by a diverse set of cell surface receptors. They contain N-terminal SH4 domains that are modified by fatty acylation and are functioning as membrane anchors. Acylated SH4 domains are both necessary and sufficient to mediate specific targeting of SRC kinases to the inner leaflet of plasma membranes. Intracellular transport of SRC kinases to the plasma membrane depends on microdomains into which SRC kinases partition upon palmitoylation. In the present study, we established a live-cell imaging screening system to identify gene products involved in plasma membrane targeting of SRC kinases. Based on siRNA arrays and a human model cell line expressing two kinds of SH4 reporter molecules, we conducted a genome-wide analysis of SH4-dependent protein targeting using an automated microscopy platform. We identified and validated 54 gene products whose down-regulation causes intracellular retention of SH4 reporter molecules. To detect and quantify this phenotype, we developed a software-based image analysis tool. Among the identified gene products, we found factors involved in lipid metabolism, intracellular transport, and cellular signaling processes. Furthermore, we identified proteins that are either associated with SRC kinases or are related to various known functions of SRC kinases such as other kinases and phosphatases potentially involved in SRC-mediated signal transduction. Finally, we identified gene products whose function is less defined or entirely unknown. Our findings provide a major resource for future studies unraveling the molecular mechanisms that underlie proper targeting of SRC kinases to the inner leaflet of plasma membranes.1 november 201

    Formation of Disulfide Bridges Drives Oligomerization, Membrane Pore Formation, and Translocation of Fibroblast Growth Factor 2 to Cell Surfaces

    No full text
    Fibroblast growth factor 2 (FGF2) is a key signaling molecule in tumor-induced angiogenesis. FGF2 is secreted by an unconventional secretory mechanism that involves phosphatidylinositol 4,5-bisphosphate-dependent insertion of FGF2 oligomers into the plasma membrane. This process is regulated by Tec kinase-mediated tyrosine phosphorylation of FGF2. Molecular interactions driving FGF2 monomers into membrane-inserted FGF2 oligomers are unknown. Here we identify two surface cysteines that are critical for efficient unconventional secretion of FGF2. They represent unique features of FGF2 as they are absent from all signal-peptide-containing members of the FGF protein family. We show that phosphatidylinositol 4,5-bisphosphate-dependent FGF2 oligomerization concomitant with the generation of membrane pores depends on FGF2 surface cysteines as either chemical alkylation or substitution with alanines impairs these processes. We further demonstrate that the FGF2 variant forms lacking the two surface cysteines are not secreted from cells. These findings were corroborated by experiments redirecting a signal-peptide-containing FGF family member from the endoplasmic reticulum/Golgi-dependent secretory pathway into the unconventional secretory pathway of FGF2. Cis elements known to be required for unconventional secretion of FGF2, including the two surface cysteines, were transplanted into a variant form of FGF4 without signal peptide. The resulting FGF4/2 hybrid protein was secreted by unconventional means. We propose that the formation of disulfide bridges drives membrane insertion of FGF2 oligomers as intermediates in unconventional secretion of FGF2

    Tec-kinase-mediated phosphorylation of fibroblast growth factor 2 is essential for unconventional secretion

    Full text link
    Fibroblast growth factor 2 (FGF2) is a potent mitogen that is exported from cells by an endoplasmic reticulum (ER)/Golgi-independent mechanism. Unconventional secretion of FGF2 occurs by direct translocation across plasma membranes, a process that depends on the phosphoinositide phosphatidylinositol 4,5-biphosphate (PI(4,5)P(2)) at the inner leaflet as well as heparan sulfate proteoglycans at the outer leaflet of plasma membranes; however, additional core and regulatory components of the FGF2 export machinery have remained elusive. Here, using a highly effective RNAi screening approach, we discovered Tec kinase as a novel factor involved in unconventional secretion of FGF2. Tec kinase does not affect FGF2 secretion by an indirect mechanism, but rather forms a heterodimeric complex with FGF2 resulting in phosphorylation of FGF2 at tyrosine 82, a post-translational modification shown to be essential for FGF2 membrane translocation to cell surfaces. Our findings suggest a crucial role for Tec kinase in regulating FGF2 secretion under various physiological conditions and, therefore, provide a new perspective for the development of a novel class of antiangiogenic drugs targeting the formation of the FGF2/Tec complex

    Cell-surface heparan sulfate proteoglycans are essential components of the unconventional export machinery of FGF-2

    No full text
    FGF-2 is an unconventionally secreted lectin that transmits proangiogenic signals through a ternary complex with high-affinity FGF receptors and heparan sulfate proteoglycans (HSPGs). Although FGF-2 signal transduction is understood in great detail, its mechanism of release from cells, which is independent of the classical secretory pathway, remains elusive. To test the hypothesis that FGF-2 secretion is linked to its cell-surface ligands, we studied FGF-2 release using mutants defective for HSPG binding and cells with impaired HSPG biosynthesis. Here, we report that a functional interaction between FGF-2 and HSPGs is required for net export of FGF-2 from mammalian cells. FGF-2 release requires extracellular, membrane-proximal HSPGs. We propose that extracellular HSPGs form a molecular trap that drives FGF-2 translocation across the plasma membrane
    corecore