3 research outputs found

    Effect of obesity on the expression of nutrient receptors and satiety hormones in the human colon

    Get PDF
    Background: Receptors located on enteroendocrine cells (EECs) of the colon can detect nutrients in the lumen. These receptors regulate appetite through a variety of mechanisms, including hormonal and neuronal signals. We assessed the effect of obesity on the expression of these G-protein coupled receptors (GPCRs) and hormones at both mRNA and protein level. Methods: qPCR and immunohistochemistry were used to examine colonic tissue from cohorts of patients from the Netherlands (proximal and sigmoid tissue) and the United Kingdom (tissue from across the colon) and patients were grouped by body mass index (BMI) value (BMI < 25 and BMI ≥ 25). Results: The mRNA expression of the hormones/signaling molecules serotonin, glucagon, peptide YY (PYY), CCK and somatostatin were not significantly different between BMI groups. GPR40 mRNA expression was significantly increased in sigmoid colon samples in the BMI ≥ 25 group, but not proximal colon. GPR41, GPR109a, GPR43, GPR120, GPRC6A, and CaSR mRNA expression were unaltered between low and high BMI. At the protein level, serotonin and PYY containing cell numbers were similar in high and low BMI groups. Enterochromaffin cells (EC) showed high degree of co-expression with amino acid sensing receptor, CaSR while co-expression with PYY containing L-cells was limited, regardless of BMI. Conclusions: While expression of medium/long chain fatty acid receptor GPR40 was increased in the sigmoid colon of the high BMI group, expression of other nutrient sensing GPCRs, and expression profiles of EECs involved in peripheral mechanisms of appetite regulation were unchanged. Collectively, these data suggest that in human colonic tissue, EEC and nutrient-sensing receptor expression profiles are not affected despite changes to BMI

    Integrated fecal microbiome–metabolome signatures reflect stress and serotonin metabolism in irritable bowel syndrome

    Get PDF
    To gain insight into the complex microbiome-gut-brain axis in irritable bowel syndrome (IBS) several modalities of biological and clinical data must be combined. We aimed to identify profiles of faecal microbiota and metabolites associated with IBS and to delineate specific phenotypes of IBS that represent potential pathophysiological mechanisms. Faecal metabolites were measured using proton Nuclear Magnetic Resonance (1H-NMR) spectroscopy and gut microbiome using Shotgun Metagenomic Sequencing (MGS) in a combined dataset of 142 IBS patients and 120 healthy controls (HC) with extensive clinical, biological and phenotype information. Data were analysed using support vector classification and regression and kernel t-SNE. Microbiome and metabolome profiles could distinguish IBS and HC with an area-under-the-receiver-operator-curve (AUC) of 77.3% and 79.5%, respectively, but this could be improved by combining microbiota and metabolites to 83.6%. No significant differences in predictive ability of the microbiome-metabolome data were observed between the three classical, stool pattern-based, IBS subtypes. However, unsupervised clustering showed distinct subsets of IBS patients based on faecal microbiome-metabolome data. These clusters could be related plasma levels of serotonin and its metabolite 5-hydroxyindoleacetate, effects of psychological stress on gastrointestinal symptoms, onset of IBS after stressful events, medical history of previous abdominal surgery, dietary caloric intake and IBS symptom duration. Furthermore, pathways in metabolic reaction networks were integrated with microbiota data, that reflect the host-microbiome interactions in IBS. The identified microbiome-metabolome signatures for IBS, associated with altered serotonin metabolism and unfavourable stress-response related to gastrointestinal symptoms, support the microbiota-gut-brain link in the pathogenesis of IBS

    A putative anti-inflammatory role for TRPM8 in irritable bowel syndrome-An exploratory study.

    No full text
    BACKGROUND: Chronic and recurring pain is a characteristic symptom in irritable bowel syndrome (IBS). Altered signaling between immune cells and sensory neurons within the gut may promote generation of pain symptoms. As transient receptor potential melastatin 8 (TRPM8) agonists, such as L-menthol in peppermint oil, have shown to attenuate IBS pain symptoms, we began investigating potential molecular mechanisms. METHODS: Colonic biopsy tissues were collected from patients with IBS and controls, in two separate cohorts. Immunohistochemistry was performed to identify TRPM8 localization. Quantitative PCR was performed to measure mucosal mRNA levels of TRPM8. In addition, functional experiments with the TRPM8 agonist icilin were performed ex vivo to examine cytokine release from biopsies. Daily diaries were collected to ascertain pain symptoms. RESULTS: In biopsy tissue from IBS patients, we showed that TRPM8 immunoreactivity is colocalized with immune cells predominantly of the dendritic cell lineage, in close approximation to nerve endings, and TRPM8 protein and mRNA expression was increased in IBS patients compared to controls (p < 0.001). TRPM8 mRNA expression showed a significant positive association with abdominal pain scores (p = 0.015). Treatment of IBS patient biopsies with icilin reduced release of inflammatory cytokines IL-1β, IL-6, and TNF-α (p < 0.05). CONCLUSIONS AND INFERENCES: These data indicate TRPM8 may have important anti-inflammatory properties and by this virtue can impact neuro-immune disease mechanisms in IBS
    corecore