96 research outputs found
Mammary-carcinoma cells in mouse liver: infiltration of liver tissue and interaction with Kupffer cells.
Interactions between TA3 mammary-carcinoma cells and liver cells were studied with the electron microscope in mouse livers that had been perfused with a defined medium containing the tumour cells. Infiltration of liver tissue by the TA3 cells proceeded in the following steps. First, numerous small protrusions were extended through endothelial cells and into hepatocytes. Next, some cells had larger processes deeply indenting hepatocytes. Finally a few tumour cells became located outside the blood vessels. Two variant cell lines, TA3/Ha and TA3/St, differing in cell coat and surface charge, did not differ in the extent of infiltration. TA3/Ha cells were often encircled by thin processes of liver macrophages (Kupffer cells). Encircled cells were initially intact, but later some of them degenerated. These observations suggest that TA3/Ha cells were phagocytized by the Kupffer cells. Encirclement appeared to be inhibited after only 30 min, when many cells were still partly surrounded. Encirclement of TA3/St was much less frequent. After injection of tumour cells intra-portally in vivo, similar results were obtained, which demonstrated the validity of the perfused liver model. TA3/Ha cells formed much fewer tumour nodules in the liver than TA3/St cells
Measurement of cosmic-ray muon spallation products in a xenon-loaded liquid scintillator with KamLAND
Cosmic-ray muons produce various radioisotopes when passing through material.
These spallation products can be backgrounds for rare event searches such as in
solar neutrino, double-beta decay, and dark matter search experiments. The
KamLAND-Zen experiment searches for neutrinoless double-beta decay in 745kg of
xenon dissolved in liquid scintillator. The experiment includes dead-time-free
electronics with a high efficiency for detecting muon-induced neutrons. The
production yields of different radioisotopes are measured with a combination of
delayed coincidence techniques, newly developed muon reconstruction and xenon
spallation identification methods. The observed xenon spallation products are
consistent with results from the FLUKA and Geant4 simulation codes
Recommended from our members
Search for charged excited states of dark matter with KamLAND-Zen
Particle dark matter could belong to a multiplet that includes an electrically charged state. WIMP dark matter (Ï0) accompanied by a negatively charged excited state (Ïâ) with a small mass difference (e.g. < 20 MeV) can form a bound-state with a nucleus such as xenon. This bound-state formation is rare and the released energy is O(1â10) MeV depending on the nucleus, making large liquid scintillator detectors suitable for detection. We searched for bound-state formation events with xenon in two experimental phases of the KamLAND-Zen experiment, a xenon-doped liquid scintillator detector. No statistically significant events were observed. For a benchmark parameter set of WIMP mass mÏ0=1 TeV and mass difference Îm=17 MeV, we set the most stringent upper limits on the recombination cross section times velocity ăÏvă and the decay-width of Ïâ to 9.2Ă10â30 cm3/s and 8.7Ă10â14 GeV, respectively at 90% confidence level
Recommended from our members
Combined Pre-supernova Alert System with KamLAND and Super-Kamiokande
Preceding a core-collapse supernova (CCSN), various processes produce an increasing amount of neutrinos of all flavors characterized by mounting energies from the interior of massive stars. Among them, the electron antineutrinos are potentially detectable by terrestrial neutrino experiments such as KamLAND and Super-Kamiokande (SK) via inverse beta decay interactions. Once these pre-supernova (pre-SN) neutrinos are observed, an early warning of the upcoming CCSN can be provided. In light of this, KamLAND and SK, both located in the Kamioka mine in Japan, have been monitoring pre-SN neutrinos since 2015 and 2021, respectively. Recently, we performed a joint study between KamLAND and SK on pre-SN neutrino detection. A pre-SN alert system combining the KamLAND detector and the SK detector was developed and put into operation, which can provide a supernova alert to the astrophysics community. Fully leveraging the complementary properties of these two detectors, the combined alert is expected to resolve a pre-SN neutrino signal from a 15 M â star within 510 pc of the Earth at a significance level corresponding to a false alarm rate of no more than 1 per century. For a Betelgeuse-like model with optimistic parameters, it can provide early warnings up to 12 hr in advance
Beyond crime statistics: the construction and application of a criminogenity monitor in Amsterdam
Criminologists have devoted a great deal of attention to risk factors - also called criminogenic factors - leading to criminal offending. This paper presents a criminogenity monitor which includes 19 risk factors that underlie crime. These factors do not themselves cause criminal behaviour; rather, they must be seen as signals that crimes may be committed. After discussing how the criminogenity monitor was constructed, we apply the risk factors we examined to the situation in Amsterdam, capital city of the Netherlands. The monitor is intended to function particularly as an instrument to rationalise policy-makers' work in targeting and preventing symptoms of crime at three geographical levels: the entire city, its boroughs and its neighbourhoods. © 2012 The Author(s)
Restoration of biogeomorphic systems by creating windows of opportunity to support natural establishment processes
In degraded landscapes, recolonization by pioneer vegetation is often halted by the presence of persistent environmental stress. When natural expansion does occur, it is commonly due to the momentary alleviation of a key environmental variable previously limiting new growth. Thus, studying the circumstances in which expansion occurs can inspire new restoration techniques, wherein vegetation establishment is provoked by emulating natural events through artificial means. Using the salt-marsh pioneer zone on tidal flats as a biogeomorphic model system, we explore how locally raised sediment bed forms, which are the result of natural (bio)geomorphic processes, enhance seedling establishment in an observational study. We then conduct a manipulative experiment designed to emulate these facilitative conditions in order to enable establishment on an uncolonized tidal flat. Here, we attempt to generate raised growth-promoting sediment bed forms using porous artificial structures. Flume experiments demonstrate how these structures produce a sheltered hydrodynamic environment in which suspended sediment and seeds preferentially settle. The application of these structures in the field led to the formation of stable, raised sediment platforms and the spontaneous recruitment of salt-marsh pioneers in the following growing season. These recruits were composed primarily of the annual pioneering Salicornia genus, with densities of up to 140Â individuals/m2 within the structures, a 60-fold increase over ambient densities. Lower abundances of five other perennial species were found within structures that did not appear elsewhere in the pioneer zone. Furthermore, recruits grew to be on average three times greater in mass inside of the structures than in the neighboring ambient environment. The success of this restoration design may be attributed to the combination of three factors: (1) enhanced seed retention, (2) suppressed mortality, and (3) accelerated growth rates on the elevated surfaces generated by the artificial structures. We argue that restoration approaches similar to the one shown here, wherein the conditions for natural establishment are actively mimicked to promote vegetation development, may serve as promising tools in many biogeomorphic ecosystems, ranging from coastal to arid ecosystems
Cosmogenic background simulations for neutrinoless double beta decay with the DARWIN observatory at various underground sites
Xenon dual-phase time projections chambers (TPCs) have proven to be a successful technology in studying physical phenomena that require low-background conditions. With 40t of liquid xenon (LXe) in the TPC baseline design, DARWIN will have a high sensitivity for the detection of particle dark matter, neutrinoless double beta decay (0 Îœ ÎČ ÎČ), and axion-like particles (ALPs). Although cosmic muons are a source of background that cannot be entirely eliminated, they may be greatly diminished by placing the detector deep underground. In this study, we used Monte Carlo simulations to model the cosmogenic background expected for the DARWIN observatory at four underground laboratories: Laboratori Nazionali del Gran Sasso (LNGS), Sanford Underground Research Facility (SURF), Laboratoire Souterrain de Modane (LSM) and SNOLAB. We present here the results of simulations performed to determine the production rate of 137 Xe, the most crucial isotope in the search for 0 Îœ ÎČ ÎČ of 136 Xe. Additionally, we explore the contribution that other muon-induced spallation products, such as other unstable xenon isotopes and tritium, may have on the cosmogenic background
Cosmogenic background simulations for the DARWIN observatory at different underground locations
Xenon dual-phase time projections chambers (TPCs) have proven to be a
successful technology in studying physical phenomena that require
low-background conditions. With 40t of liquid xenon (LXe) in the TPC baseline
design, DARWIN will have a high sensitivity for the detection of particle dark
matter, neutrinoless double beta decay (), and axion-like
particles (ALPs). Although cosmic muons are a source of background that cannot
be entirely eliminated, they may be greatly diminished by placing the detector
deep underground. In this study, we used Monte Carlo simulations to model the
cosmogenic background expected for the DARWIN observatory at four underground
laboratories: Laboratori Nazionali del Gran Sasso (LNGS), Sanford Underground
Research Facility (SURF), Laboratoire Souterrain de Modane (LSM) and SNOLAB. We
determine the production rates of unstable xenon isotopes and tritium due to
muon-included neutron fluxes and muon-induced spallation. These are expected to
represent the dominant contributions to cosmogenic backgrounds and thus the
most relevant for site selection
- âŠ