19 research outputs found

    Benefits and harms of perioperative high fraction inspired oxygen for surgical site infection prevention: a protocol for a systematic review and meta-analysis of individual patient data of randomised controlled trials.

    Get PDF
    INTRODUCTION The use of high fraction of inspired oxygen (FiO2) intraoperatively for the prevention of surgical site infection (SSI) remains controversial. Promising results of early randomised controlled trials (RCT) have been replicated with varying success and subsequent meta-analysis are equivocal. Recent advancements in perioperative care, including the increased use of laparoscopic surgery and pneumoperitoneum and shifts in fluid and temperature management, can affect peripheral oxygen delivery and may explain the inconsistency in reproducibility. However, the published data provides insufficient detail on the participant level to test these hypotheses. The purpose of this individual participant data meta-analysis is to assess the described benefits and harms of intraoperative high FiO2compared with regular (0.21-0.40) FiO2 and its potential effect modifiers. METHODS AND ANALYSIS Two reviewers will search medical databases and online trial registries, including MEDLINE, Embase, CENTRAL, CINAHL, ClinicalTrials.gov and WHO regional databases, for randomised and quasi-RCT comparing the effect of intraoperative high FiO2 (0.60-1.00) to regular FiO2 (0.21-0.40) on SSI within 90 days after surgery in adult patients. Secondary outcome will be all-cause mortality within the longest available follow-up. Investigators of the identified trials will be invited to collaborate. Data will be analysed with the one-step approach using the generalised linear mixed model framework and the statistical model appropriate for the type of outcome being analysed (logistic and cox regression, respectively), with a random treatment effect term to account for the clustering of patients within studies. The bias will be assessed using the Cochrane risk-of-bias tool for randomised trials V.2 and the certainty of evidence using Grading of Recommendations, Assessment, Development and Evaluation methodology. Prespecified subgroup analyses include use of mechanical ventilation, nitrous oxide, preoperative antibiotic prophylaxis, temperature (2.5 hour). ETHICS AND DISSEMINATION Ethics approval is not required. Investigators will deidentify individual participant data before it is shared. The results will be submitted to a peer-review journal. PROSPERO REGISTRATION NUMBER CRD42018090261

    The Circulatory Effects of Increased Hydrostatic Pressure Due to Immersion and Submersion

    No full text
    Increased hydrostatic pressure as experienced during immersion and submersion has effects on the circulation. The main effect is counteracting of gravity by buoyancy, which results in reduced extravasation of fluid. Immersion in a cold liquid leads to peripheral vasoconstriction, which centralizes the circulation. Additionally, a pressure difference usually exists between the lungs and the rest of the body, promoting pulmonary edema. However, hydrostatic pressure does not exert an external compressing force that counteracts extravasation, since the increased pressure is transmitted equally throughout all tissues immersed at the same level. Moreover, the vertical gradient of hydrostatic pressure down an immersed body part does not act as a resistance to blood flow. The occurrence of cardiovascular collapse when an immersed person is rescued from the water is not explained by removal of hydrostatic squeeze, but by sudden reinstitution of the effect of gravity in a cold and vasoplegic subject

    Seizures in Iatrogenic Cerebral Arterial Gas Embolism

    No full text
    Objectives: Iatrogenic cerebral arterial gas embolism occurs when gas enters the cerebral arterial circulation during a medical procedure and is considered a severe complication. Seizures have been described in these patients, but information on clinical characteristics, treatment, and outcome is lacking in current literature. The aim of the study was to explore seizures in patients with iatrogenic cerebral arterial gas embolism and to evaluate management strategies. Design: Retrospective single-center observational study. Setting: The only university hospital in the Netherlands with a hyperbaric oxygen therapy facility. Patients: All patients presenting at or referred to our center with iatrogenic cerebral arterial gas embolism between May 2016 and December 2020. Interventions: Not applicable. Measurements and Main Results: Fifteen patients with iatrogenic cerebral arterial gas embolism were identified, of whom 11 (73%) developed seizures. Five patients developed their first seizure prior to hyperbaric oxygen therapy, three during hyperbaric oxygen therapy, and three after hyperbaric oxygen therapy. Of the 11 patients with seizures, all but one were treated with anti-epileptic drugs. With a median follow-up time of 5 months (range, 1-54 mo), five patients showed complete neurologic recovery, five had minor neurologic deficit, two had moderate to severe neurologic deficit, and three had died. Four patients still used anti-epileptic drugs at follow-up. No patients had recurrent seizures after hospital discharge. Conclusions: `Seizures are a common symptom in iatrogenic cerebral arterial gas embolism. They are often treated with anti-epileptic drugs and do not seem to lead to chronic epilepsy

    Use 80% Oxygen Not Only During Extubation But Throughout Anesthesia

    No full text

    The effects of hyperbaric oxygenation on oxidative stress, inflammation and angiogenesis

    No full text
    Hyperbaric oxygen therapy (HBOT) is commonly used as treatment in several diseases, such as non-healing chronic wounds, late radiation injuries and carbon monoxide poisoning. Ongoing research into HBOT has shown that preconditioning for surgery is a potential new treatment application, which may reduce complication rates and hospital stay. In this review, the effect of HBOT on oxidative stress, inflammation and angiogenesis is investigated to better understand the potential mechanisms underlying preconditioning for surgery using HBOT. A systematic search was conducted to retrieve studies measuring markers of oxidative stress, inflammation, or angiogenesis in humans. Analysis of the included studies showed that HBOT-induced oxidative stress reduces the concentrations of pro-inflammatory acute phase proteins, interleukins and cytokines and increases growth factors and other pro-angiogenesis cytokines. Several articles only noted this surge after the first HBOT session or for a short duration after each session. The anti-inflammatory status following HBOT may be mediated by hyperoxia interfering with NF-κB and IκBα. Further research into the effect of HBOT on inflammation and angiogenesis is needed to determine the implications of these findings for clinical practice

    A retrospective cohort study of lidocaine in divers with neurological decompression illness

    No full text
    Lidocaine is the most extensively studied substance for adjuvant therapy in neurological decompression illness (DCI), but results have been conflicting. In this retrospective cohort study, we compared 14 patients who received adjuvant intravenous lidocaine for neurological decompression sickness and cerebral arterial gas embolism between 2001 and 2011 against 21 patients who were treated between 1996 and 2001 and did not receive lidocaine. All patients were treated with hyperbaric oxygen (HBO2) therapy according to accepted guidelines. Groups were comparable for all investigated confounding factors, except that significantly more control patients had made an unsafe dive (62% vs. 14%, p = 0.007). Groups had comparable injury severity as measured by Dick and Massey score (lidocaine 2.7 +/- 1.7, control 2.0 +/- 1.6), an adapted version of the Dick and Massey score, and the Blatteau score. Number of HBO2 sessions given was comparable in both groups (lidocaine 2.7 +/- 2.3, control 2.0 +/- 1.0). There was neither a positive nor a negative effect of lidocaine on outcome (relative risk for objective neurological signs at follow-up in the lidocaine group was 1.8, 95% CI 0.2-16). This is the first retrospective cohort study of lidocaine in neurological DCI. Since our study is under-powered to draw definitive conclusions, a prospective multicenter study remains the only way to reliably determine the effect of lidocaine in neurological decompression illnes

    The Effect of Hyperbaric Oxygen Therapy on Markers of Oxidative Stress and the Immune Response in Healthy Volunteers

    No full text
    Hyperbaric oxygen therapy (HBOT) consists of breathing 100% oxygen under increased ambient pressure. There are indications that HBOT induces oxidative stress and activates immune pathways. However, previous research on immunological effects of HBOT has mainly been established in in vitro experiments and selected patient populations, limiting generalizability and increasing the chances of confounding by comorbidities and specific patient-related factors. More insight into the immunological effects of HBOT would aid investigation and comprehension of potentially novel treatment applications. Therefore, in this study, we investigated the effects of three 110-min HBOT-sessions with 24-h intervals on immunological parameters in healthy, young, male volunteers. Blood samples were obtained before and after the first and third HBOT sessions. We assessed neutrophilic reactive oxygen species (ROS) production, systemic oxidative stress [plasma malondialdehyde (MDA) concentrations] as well as neutrophil phagocytic activity, plasma concentrations of tumor necrosis factor (TNF), interleukin (IL)-6, IL-8, and IL-10, and production of TNF, IL-6, and IL-10 by leukocytes ex vivo stimulated with the Toll-like receptor (TLR) ligands lipopolysaccharide (TLR4) and Pam3Cys (TLR2). We observed decreased neutrophilic ROS production and phagocytosis following the second HBOT session, which persisted after the third session, but no alterations in MDA concentrations. Furthermore, plasma concentrations of the investigated cytokines were unaltered at all-time points, and ex vivo cytokine production was largely unaltered over time as well. These results indicate no induction of systemic oxidative stress or a systemic inflammatory response after repeated HBOT in healthy volunteers but may suggest exhaustion of ROS generation capacity and phagocytosis

    The Effect of Hyperbaric Oxygen Therapy on Markers of Oxidative Stress and the Immune Response in Healthy Volunteers

    No full text
    Hyperbaric oxygen therapy (HBOT) consists of breathing 100% oxygen under increased ambient pressure. There are indications that HBOT induces oxidative stress and activates immune pathways. However, previous research on immunological effects of HBOT has mainly been established in in vitro experiments and selected patient populations, limiting generalizability and increasing the chances of confounding by comorbidities and specific patient-related factors. More insight into the immunological effects of HBOT would aid investigation and comprehension of potentially novel treatment applications. Therefore, in this study, we investigated the effects of three 110-min HBOT-sessions with 24-h intervals on immunological parameters in healthy, young, male volunteers. Blood samples were obtained before and after the first and third HBOT sessions. We assessed neutrophilic reactive oxygen species (ROS) production, systemic oxidative stress [plasma malondialdehyde (MDA) concentrations] as well as neutrophil phagocytic activity, plasma concentrations of tumor necrosis factor (TNF), interleukin (IL)-6, IL-8, and IL-10, and production of TNF, IL-6, and IL-10 by leukocytes ex vivo stimulated with the Toll-like receptor (TLR) ligands lipopolysaccharide (TLR4) and Pam3Cys (TLR2). We observed decreased neutrophilic ROS production and phagocytosis following the second HBOT session, which persisted after the third session, but no alterations in MDA concentrations. Furthermore, plasma concentrations of the investigated cytokines were unaltered at all-time points, and ex vivo cytokine production was largely unaltered over time as well. These results indicate no induction of systemic oxidative stress or a systemic inflammatory response after repeated HBOT in healthy volunteers but may suggest exhaustion of ROS generation capacity and phagocytosis
    corecore