26 research outputs found

    Criteria for Viability Assessment of Discarded Human Donor Livers during Ex Vivo Normothermic Machine Perfusion

    Get PDF
    Although normothermic machine perfusion of donor livers may allow assessment of graft viability prior to transplantation, there are currently no data on what would be a good parameter of graft viability. To determine whether bile production is a suitable biomarker that can be used to discriminate viable from non-viable livers we have studied functional performance as well as biochemical and histological evidence of hepatobiliary injury during ex vivo normothermic machine perfusion of human donor livers. After a median duration of cold storage of 6.5 h, twelve extended criteria human donor livers that were declined for transplantation were ex vivo perfused for 6 h at 37 °C with an oxygenated solution based on red blood cells and plasma, using pressure controlled pulsatile perfusion of the hepatic artery and continuous portal perfusion. During perfusion, two patterns of bile flow were identified: (1) steadily increasing bile production, resulting in a cumulative output of ≥ 30 g after 6 h (high bile output group), and (2) a cumulative bile production <20 g in 6 h (low bile output group). Concentrations of transaminases and potassium in the perfusion fluid were significantly higher in the low bile output group, compared to the high bile output group. Biliary concentrations of bilirubin and bicarbonate were respectively 4 times and 2 times higher in the high bile output group. Livers in the low bile output group displayed more signs of hepatic necrosis and venous congestion, compared to the high bile output group. In conclusion, bile production could be an easily assessable biomarker of hepatic viability during ex vivo machine perfusion of human donor livers. It could potentially be used to identify extended criteria livers that are suitable for transplantation. These ex vivo findings need to be confirmed in a transplant experiment or a clinical trial

    Hemostasis in Liver Disease:Implications of New Concepts for Perioperative Management

    No full text
    The hemostatic profile of patients with liver diseases is frequently profoundly different from that of healthy individuals. These complex alterations lead to abnormal results from routine laboratory tests, but because of the nature of these assays, they fail to accurately represent the patient's hemostatic state. Nevertheless, based on abnormal laboratory coagulation values, it has long been assumed that patients with liver disease have a natural bleeding tendency and are protected from thrombosis. This assumption is false; the average patient with liver disease is actually in a state of "rebalanced hemostasis" that can relatively easily be tipped toward both bleeding and thrombosis. The new paradigm of rebalanced hemostasis has strong implications for the clinic, which are presented in this review. There is no evidence that prophylactic transfusion of plasma helps to prevent procedure-related bleeding. In addition, the presence of independent risk factors such as poor kidney status or infections should be carefully assessed before invasive procedures. Furthermore, central venous pressure plays an important role in the risk of bleeding in patients with liver diseases, so during procedures, a restrictive infusion policy should be applied. Finally, thrombosis prophylaxis should not be withheld from patients with cirrhosis or acute liver failure, and clinicians should be alert to the possibility of thrombosis occurring in these patients. (C) 2014 Elsevier Inc. All rights reserved

    Machine perfusion in liver transplantation as a tool to prevent non-anastomotic biliary strictures:Rationale, current evidence and future directions

    Get PDF
    SummaryThe high incidence of non-anastomotic biliary strictures (NAS) after transplantation of livers from extended criteria donors is currently a major barrier to widespread use of these organs. This review provides an update on the most recent advances in the understanding of the etiology of NAS. These new insights give reason to believe that machine perfusion can reduce the incidence of NAS after transplantation by providing more protective effects on the biliary tree during preservation of the donor liver. An overview is presented regarding the different endpoints that have been used for assessment of biliary injury and function before and after transplantation, emphasizing on methods used during machine perfusion. The wide spectrum of different approaches to machine perfusion is discussed, including the many different combinations of techniques, temperatures and perfusates at varying time points. In addition, the current understanding of the effect of machine perfusion in relation to biliary injury is reviewed. Finally, we explore directions for future research such as the application of (pharmacological) strategies during machine perfusion to further improve preservation. We stress the great potential of machine perfusion to possibly expand the donor pool by reducing the incidence of NAS in extended criteria organs

    A novel model for ex situ reperfusion of the human liver following subnormothermic machine perfusion

    Get PDF
    Machine perfusion-based organ preservation techniques are prudently transitioning into clinical practice. Although experimental data is compelling, the outcomes in the highly variable clinical donation-transplantation setting are unpredictable. Here, we offer an intermediate tool for pre-clinical assessment of human donor livers. We present a model for ex situ reperfusion of discarded human livers and report on its application in three human livers that have undergone subnormothermic (21 degrees C) machine perfusion as an experimental preservation method. During reperfusion, the livers macroscopically reperfused in the first 15 minutes, and remained visually well-perfused for 3 hours of ex situ reperfusion. Bile production and oxygen consumption were observed throughout ex situ reperfusion. ATP levels increased 4.25-fold during SNMP. Between the end of SNMP and the end of reperfusion ATP levels dropped 45%. ALT levels in blood increased rapidly in the first 30 minutes and ALT release continued to taper off towards the end of perfusion. Release of CRP, TNF-alpha, IL-1 ss, and IL-12, IFN-gamma was sustained during reperfusion. These findings support the use of this model for the evaluation of novel human liver preservation techniques

    Functional Human Liver Preservation and Recovery by Means of Subnormothermic Machine Perfusion

    Get PDF
    There is currently a severe shortage of liver grafts available for transplantation. Novel organ preservation techniques are needed to expand the pool of donor livers. Machine perfusion of donor liver grafts is an alternative to traditional cold storage of livers and holds much promise as a modality to expand the donor organ pool. We have recently described the potential benefit of subnormothermic machine perfusion of human livers. Machine perfused livers showed improving function and restoration of tissue ATP levels. Additionally, machine perfusion of liver grafts at subnormothermic temperatures allows for objective assessment of the functionality and suitability of a liver for transplantation. In these ways a great many livers that were previously discarded due to their suboptimal quality can be rescued via the restorative effects of machine perfusion and utilized for transplantation. Here we describe this technique of subnormothermic machine perfusion in detail. Human liver grafts allocated for research are perfused via the hepatic artery and portal vein with an acellular oxygenated perfusate at 21 degrees C

    Peritransplant energy changes and their correlation to outcome after human liver transplantation

    No full text
    BACKGROUND: The ongoing shortage of donor livers for transplantation and the increased use of marginal livers necessitate the development of accurate pretransplant tests of viability. Considering the importance energy status during transplantation, we aimed to correlate peritransplant energy cofactors to posttransplant outcome and subsequently model this in an ex vivo setting. METHODS: Sequential biopsies were taken from 19 donor livers postpreservation, as well as 30 min after portal venous (PVR) and hepatic arterial reperfusion (HAR) and analyzed by LC-MS for energetic cofactors (ATP/ADP/AMP, NADH/NAD, NADPH/NADP, FAD, GSSG/GSH). Energy status was correlated to posttransplant outcome. In addition, 4 discarded human DCD livers were subjected to ex vivo reperfusion, modeling reperfusion injury and were similarly analyzed for energetic cofactors. RESULTS: A rapid shift towards higher energy adenine nucleotides was observed following clinical reperfusion, with a 2.45-, 3.17- and 2.12-fold increase in ATP:ADP, ATP:AMP and energy charge (EC) after PVR, respectively. Seven of the 19 grafts developed early allograft dysfunction (EAD). Correlation with peritransplant cofactors revealed a significant difference in EC between EAD and normal functioning grafts (0.09 vs. 0.31, P<0.05). In the simulated reperfusion model, a similar trend in adenine nucleotide changes was observed. CONCLUSION: A preserved energy status appears critical in the peritransplant period. Levels of adenine nucleotides change rapidly following reperfusion and ratios of ATP/ADP/AMP following reperfusion are significantly correlated to graft function. Using these markers as a viability test in combination with ex vivo reperfusion may provide a useful predictor of outcome that incorporates donor, preservation and reperfusion factors
    corecore