24 research outputs found

    Geodetic constraints on cratonic microplates and broad strain during rifting of thick Southern African lithosphere

    Get PDF
    Southern Africa is typically considered to belong to a single tectonic plate, Nubia, despite active faulting along the southwestern branch of the East African Rift System. We analyze regional Global Navigation Satellite System (GNSS) measurements, and find that the “San” microplate, situated south of the southwestern branch of the East African Rift, is statistically distinct from Nubia, with 0.4–0.7 mm/yr of extension across the boundary. Adding nine new campaign GNSS sites, we show that the extension rate across the southern Malawi Rift is 2.2 ± 0.3 mm/yr, with 75% of the relative velocity occurring over 890 km, despite the surface expression of faulting being <150 km wide. Thus, for the first time, we use geodetic measurements to describe the accommodation of strain in broad zones between Archean cratons in southern Africa's thick continental lithosphere

    A systems-based approach to parameterise seismic hazard in regions with little historical or instrumental seismicity:Active fault and seismogenic source databases for southern Malawi

    Get PDF
    Seismic hazard is commonly characterised using instrumental seismic records. However, these records are short relative to earthquake repeat times, and extrapolating to estimate seismic hazard can misrepresent the probable location, magnitude, and frequency of future large earthquakes. Although paleoseismology can address this challenge, this approach requires certain geomorphic setting, is resource intensive, and can carry large inherent uncertainties. Here, we outline how fault slip rates and recurrence intervals can be estimated by combining fault geometry, earthquake-scaling relationships, geodetically derived regional strain rates, and geological constraints of regional strain distribution. We apply this approach to southern Malawi, near the southern end of the East African Rift, and where, although no on-fault slip rate measurements exist, there are constraints on strain partitioning between border and intra-basin faults. This has led to the development of the South Malawi Active Fault Database (SMAFD), a geographical database of 23 active fault traces, and the South Malawi Seismogenic Source Database (SMSSD), in which we apply our systems-based approach to estimate earthquake magnitudes and recurrence intervals for the faults compiled in the SMAFD. We estimate earthquake magnitudes of MW 5.4–7.2 for individual fault sections in the SMSSD and MW 5.6–7.8 for whole-fault ruptures. However, low fault slip rates (intermediate estimates ∼ 0.05–0.8 mm/yr) imply long recurrence intervals between events: 102–105 years for border faults and 103–106 years for intra-basin faults. Sensitivity analysis indicates that the large range of these estimates can best be reduced with improved geodetic constraints in southern Malawi. The SMAFD and SMSSD provide a framework for using geological and geodetic information to characterise seismic hazard in regions with few on-fault slip rate measurements, and they could be adapted for use elsewhere in the East African Rift and globally

    Structural inheritance and border fault reactivation during active early-stage rifting along the Thyolo fault, Malawi

    Get PDF
    We present new insights on the geometry, initiation and growth of the Thyolo fault, an 85 km long active border fault in the southern Malawi Rift, from high-resolution topography, field and microstructural observations. The Thyolo fault is located towards the edge of the Proterozoic Unango Terrane, and is the border fault of the Lower Shire Graben, which has experienced four phases of extension since the Jurassic. Recent activity is demonstrated by an 18.6 ± 7.7 m high fault scarp, with two substantial reductions in scarp height along strike. However, the segment boundaries suggested by these displacement measurements do not coincide with changes in fault strike. Elsewhere, a ∼5 km long fault perpendicular scarp joins two overlapping sections, yet the scarp height in this linking section is similar to the bounding sections, and there is no evidence of significant pre-linkage strain accumulation. Microstructural analyses along the fault show a 15–45 m thick footwall damage zone with a 0.7 m thick core. We suggest that favourably-oriented, pre-existing shallow structures control changes in surface geometry and the narrow fault core, whereas exploitation of weak ductile zones at depth, possibly associated with the terrane boundary, control the displacement profile of the fault

    Low dissipation of earthquake energy where a fault follows pre-existing weaknesses: field and microstructural observations of Malawi's Bilila-Mtakataka Fault

    Get PDF
    During earthquakes on low (<1–2 km) displacement faults in isotropic crust, more earthquake energy is consumed by fracturing and gouge formation than in ruptures along more mature faults. To investigate how pre-existing weaknesses affect earthquake energy dissipation along low displacement faults, we studied fault rocks from the 110 km long, 0.4–1.2 km displacement, Bilila-Mtakataka Fault (BMF), Malawi. Where the BMF is parallel to surface metamorphic fabrics, macroscale fractures define a narrow (5–20 m wide) damage zone relative to where the BMF is foliation-oblique (20–80 m), and to faults with comparable displacement in isotropic crust (∼40–120 m). Enhanced microfracturing and widespread gouge formation, typically reported from comparable-displacement faults, are not observed. Therefore, minimal evidence for earthquake energy dissipation into the BMF’s surrounding wall rock exists, despite geomorphic evidence for MW 7.5–8 earthquakes. We attribute this finding to differences in earthquake energy partitioning along incipient faults in isotropic and anisotropic crust

    The Malawi Active Fault Database: an onshore-offshore database for regional assessment of seismic hazard and tectonic evolution

    Get PDF
    We present the Malawi Active Fault Database (MAFD), an open-access (https://doi.org/10.5281/zenodo.5507190) geospatial database of 113 fault traces in Malawi and neighboring Tanzania and Mozambique. Malawi is located within the East African Rift’s Western Branch where active fault identification is challenging because chronostratigraphic data are rare, and/or faults are buried and so do not have a surface expression. The MAFD therefore includes any fault that has evidence for displacement during Cenozoic East African rifting, or is buried beneath the rift valley and is favorably oriented to the regional stresses. To identify such faults, we consider a multidisciplinary dataset: high resolution digital elevation models, previous geological mapping, field observations, seismic reflection surveys from offshore Lake Malawi, and aeromagnetic and gravity data. The MAFD includes faults throughout Malawi, where seismic risk is increasing because of population growth and its seismically vulnerable building stock. We also investigate the database as a sample of the normal fault population in an incipient continental rift. We cannot reject the null hypothesis that the distribution of fault lengths in the MAFD is described by a power law, which is consistent with Malawi’s relatively thick seismogenic layer (30-40 km), low (<8%) regional extensional strain, and deformation localization (50-75%) across relatively long hard-linked border faults. Cumulatively, we highlight the importance of integrating onshore and offshore geological and geophysical data to develop active fault databases along the East African Rift and similar continental settings, both to understand the regional seismic hazard and tectonic evolution

    Bilila-Mtakataka Fault - Kasinge Segment

    No full text

    Bilila-Mtakataka Fault - Mua Segment

    No full text
    corecore