25 research outputs found

    Application of Tomography to the Nuclear Industry

    Get PDF
    While tomographic methods of reconstructing three~dimensional x-ray images are becoming more common in the medical field, their application to industrial problems has only started. Some of the features that differentiate industrial tomography from medical tomography are x-ray energies may vary from\u3c 10 keV to\u3e 22 MeV radiation dose to the object is not a constraint inspection times (within economic constraints) are not as important the anomalies to be detected offer sharp, high contrast boundaries to the inspection system high spatial resolution rather than high contrast sensitivity is the primary design goal, and the number of views may be limited by other (mechanical) constraints. This paper will describe the effort the Los Alamos Scientific Laboratory (LASL) is making to define the design parameters that affect the constraints listed above. A tomographic test bed in which various design features may be evaluated will be described. The computational facilities at LASL, which include a versatile modeling code that can simulate tomographic systems with various types of radiation, geometries, and detector types, will also be discussed

    Application of Tomography to the Nuclear Industry

    No full text
    While tomographic methods of reconstructing three~dimensional x-ray images are becoming more common in the medical field, their application to industrial problems has only started. Some of the features that differentiate industrial tomography from medical tomography are x-ray energies may vary from 22 MeV radiation dose to the object is not a constraint inspection times (within economic constraints) are not as important the anomalies to be detected offer sharp, high contrast boundaries to the inspection system high spatial resolution rather than high contrast sensitivity is the primary design goal, and the number of views may be limited by other (mechanical) constraints. This paper will describe the effort the Los Alamos Scientific Laboratory (LASL) is making to define the design parameters that affect the constraints listed above. A tomographic test bed in which various design features may be evaluated will be described. The computational facilities at LASL, which include a versatile modeling code that can simulate tomographic systems with various types of radiation, geometries, and detector types, will also be discussed.</p

    Application of Tomography to the Nuclear Industry

    No full text
    While tomographic methods of reconstructing three~dimensional x-ray images are becoming more common in the medical field, their application to industrial problems has only started. Some of the features that differentiate industrial tomography from medical tomography are x-ray energies may vary from 22 MeV radiation dose to the object is not a constraint inspection times (within economic constraints) are not as important the anomalies to be detected offer sharp, high contrast boundaries to the inspection system high spatial resolution rather than high contrast sensitivity is the primary design goal, and the number of views may be limited by other (mechanical) constraints. This paper will describe the effort the Los Alamos Scientific Laboratory (LASL) is making to define the design parameters that affect the constraints listed above. A tomographic test bed in which various design features may be evaluated will be described. The computational facilities at LASL, which include a versatile modeling code that can simulate tomographic systems with various types of radiation, geometries, and detector types, will also be discussed.</p
    corecore