336 research outputs found

    Confirming the Diagnosis of Amyloidosis

    Get PDF
    Amyloidosis is a general term for diseases characterised by the deposition of insoluble amyloid fibrils in organs or tissues, leading to organ dysfunction and, in many cases, death. Amyloid fibrils are derived from soluble precursor proteins, with the number of known amyloidogenic proteins increasing over time. The identity of the precursor protein often predicts the disease phenotype, although many of the amyloidoses have overlapping clinical features. Most patients with amyloidosis will require biopsy of an involved organ or tissue to confirm the diagnosis. Cardiac transthyretin amyloidosis, however, may be diagnosed without a biopsy provided stringent criteria are met. Where amyloid is confirmed histologically, the identity of the amyloidogenic protein must be determined, given several of the amyloidoses have disease-specific therapies. Laser capture microdissection and tandem mass spectrometry, LCM-MS, has revolutionised amyloid subtyping, being able to identify the amyloidogenic protein more reliably than antibody-based methods such as immunohistochemistry. Here we summarise the biopsy approach to amyloidosis, as well as the non-biopsy diagnosis of cardiac transthyretin amyloidosis. Proteomic and antibody-based methods for amyloid subtyping are reviewed. Finally, an algorithm for confirming the diagnosis of amyloidosis is presented

    Monoclonal gammopathy of undetermined significance and smoldering myeloma (SMM): a practical guide to management

    Get PDF
    Monoclonal gammopathy of undetermined significance and smoldering multiple myeloma are precursor conditions of symptomatic multiple myeloma (MM). Diagnostic principles are aimed at excluding MM requiring therapy, other conditions associated with paraproteins that may require different management, and risk stratifying patients for the purposes of tailored follow‐up and investigation. The International Myeloma Working Group have recently published a revised definition of MM, which singles out a small group of patients with smoldering multiple myeloma who are at very high risk of progression and organ damage; such patients are now included under the definition of MM and recommended to start anti‐myeloma treatment. Furthermore, the recently published National Institute of Health and Care Excellence guideline recommends cross‐sectional imaging techniques in place of skeletal survey. These recent recommendations are discussed, and practical guidance for investigation and management are presented

    Senile Systemic Amyloidosis: Clinical Features at Presentation and Outcome

    Get PDF
    Background Cardiac amyloidosis is a fatal disease whose prognosis and treatment rely on identification of the amyloid type. In our aging population transthyretin amyloidosis (ATTRwt) is common and must be differentiated from other amyloid types. We report the clinical presentation, natural history, and prognostic features of ATTRwt compared with cardiac‐isolated AL amyloidosis and calculate the probability of disease diagnosis of ATTRwt from baseline factors. Methods and Results All patients with biopsy‐proven ATTRwt (102 cases) and isolated cardiac AL (36 cases) seen from 2002 to 2011 at the UK National Amyloidosis Center were included. Median survival from the onset of symptoms was 6.07 years in the ATTRwt group and 1.7 years in the AL group. Positive troponin, a pacemaker, and increasing New York Heart Association (NYHA) class were associated with worse survival in ATTRwt patients on univariate analysis. All patients with isolated cardiac AL and 24.1% of patients with ATTRwt had evidence of a plasma cell dyscrasia. Older age and lower N‐terminal pro‐B‐type natriuretic peptide (NT pro‐BNP) were factors significantly associated with ATTRwt. Patients aged 70 years and younger with an NT pro‐BNP <183 pmol/L were more likely to have ATTRwt, as were patients older than 70 years with an NT pro‐BNP <1420 pmol/L. Conclusions Factors at baseline associated with a worse outcome in ATTRwt are positive troponin T, a pacemaker, and NYHA class IV symptoms. The age of the patient at diagnosis and NT pro‐BNP level can aid in distinguishing ATTRwt from AL amyloidosis

    Extracardiac 18F-florbetapir imaging in patients with systemic amyloidosis: more than hearts and minds

    Get PDF
    PURPOSE: 18F-Florbetapir has been reported to show cardiac uptake in patients with systemic light-chain amyloidosis (AL). This study systematically assessed uptake of 18F-florbetapir in patients with proven systemic amyloidosis at sites outside the heart. METHODS: Seventeen patients with proven cardiac amyloidosis underwent 18F-florbetapir PET/CT imaging, 15 with AL and 2 with transthyretin amyloidosis (ATTR). Three patients had repeat scans. All patients had protocolized assessment at the UK National Amyloidosis Centre including imaging with 123I-serum amyloid P component (SAP). 18F-Florbetapir images were assessed for areas of increased tracer accumulation and time-uptake curves in terms of standardized uptake values (SUVmean) were produced. RESULTS: All 17 patients showed 18F-florbetapir uptake at one or more extracardiac sites. Uptake was seen in the spleen in 6 patients (35%; 6 of 9, 67%, with splenic involvement on 123I-SAP scintigraphy), in the fat in 11 (65%), in the tongue in 8 (47%), in the parotids in 8 (47%), in the masticatory muscles in 7 (41%), in the lungs in 3 (18%), and in the kidney in 2 (12%) on the late half-body images. The 18F-florbetapir spleen retention index (SRI) was calculated. SRI >0.045 had 100% sensitivity/sensitivity (in relation to 123I-SAP splenic uptake, the current standard) in detecting splenic amyloid on dynamic imaging and a sensitivity of 66.7% and a specificity of 100% on the late half-body images. Intense lung uptake was seen in three patients, one of whom had lung interstitial infiltration suggestive of amyloid deposition on previous high-resolution CT. Repeat imaging showed a stable appearance in all three patients suggesting no early impact of treatment response. CONCLUSION: 18F-Florbetapir PET/CT is a promising tool for the detection of extracardiac sites of amyloid deposition. The combination of uptake in the heart and uptake in the spleen on 18F-florbetapir PET/CT, a hallmark of AL, suggests that this tracer holds promise as a screening tool for AL

    Rationale, application and clinical qualification for NT-proBNP as a surrogate end point in pivotal clinical trials in patients with AL amyloidosis

    Get PDF
    Amyloid light-chain (LC) amyloidosis (AL amyloidosis) is a rare and fatal disease for which there are no approved therapies. In patients with AL amyloidosis, LC aggregates progressively accumulate in organs, resulting in organ failure that is particularly lethal when the heart is involved. A significant obstacle in the development of treatments for patients with AL amyloidosis, as well as for those with any disease that is rare, severe and heterogeneous, has been satisfying traditional clinical trial end points (for example, overall survival or progression-free survival). It is for this reason that many organizations, including the United States Food and Drug Administration through its Safety and Innovation Act Accelerated Approval pathway, have recognized the need for biomarkers as surrogate end points. The international AL amyloidosis expert community is in agreement that the N-terminal fragment of the pro-brain natriuretic peptide (NT-proBNP) is analytically validated and clinically qualified as a biomarker for use as a surrogate end point for survival in patients with AL amyloidosis. Underlying this consensus is the demonstration that NT-proBNP is an indicator of cardiac response in all interventional studies in which it has been assessed, despite differences in patient population, treatment type and treatment schedule. Furthermore, NT-proBNP expression is directly modulated by amyloidogenic LC-elicited signal transduction pathways in cardiomyocytes. The use of NT-proBNP will greatly facilitate the development of targeted therapies for AL amyloidosis. Here, we review the data supporting the use of NT-proBNP, a biomarker that is analytically validated, clinically qualified, directly modulated by LC and universally accepted by AL amyloidosis specialists, as a surrogate end point for survival.Leukemia advance online publication, 2 August 2016; doi:10.1038/leu.2016.191

    A rare case of extensive biventricular cardiac sarcoidosis with reversible torrential tricuspid regurgitation

    Get PDF
    Reversal of torrential tricuspid regurgitation is rarely seen. We describe a case in which effective immunosuppression alongside conventional heart failure therapies lead to reversibility of torrential tricuspid regurgitation in a patient with cardiac sarcoidosis. We also discuss the diagnostic challenge in distinguishing cardiac sarcoidosis from other myocardial diseases in a patient presenting with biventricular failure

    Renal Transplant Outcomes in Amyloidosis

    Get PDF
    Background: Outcomes after renal transplantation have traditionally been poor in systemic amyloid A (AA) amyloidosis and systemic light chain (AL) amyloidosis, with high mortality and frequent recurrent disease. We sought to compare outcomes with matched transplant recipients with autosomal dominant polycystic kidney disease (ADPKD) and diabetic nephropathy (DN), and identify factors predictive of outcomes. Methods: We performed a retrospective cohort study of 51 systemic AL and 48 systemic AA amyloidosis patients undergoing renal transplantation. Matched groups were generated by propensity score matching. Patient and death-censored allograft survival were compared via Kaplan–Meier survival analyses, and assessment of clinicopathological features predicting outcomes via Cox proportional hazard analyses. Results: One-, 5- and 10-year death-censored unadjusted graft survival was, respectively, 94, 91 and 78% for AA amyloidosis, and 98, 93 and 93% for AL amyloidosis; median patient survival was 13.1 and 7.9 years, respectively. Patient survival in AL and AA amyloidosis was comparable to DN, but poorer than ADPKD [hazard ratio (HR) = 3.12 and 3.09, respectively; P 12 mm (HR = 26.58; P = 0.03), while survival was predicted by haematologic response (very good partial or complete response; HR = 0.07; P = 0.018). In AA amyloidosis, recurrent amyloid was associated with elevated serum amyloid A concentration but not with outcomes. Conclusions: Renal transplantation outcomes for selected patients with AA and AL amyloidosis are comparable to those with DN. In AL amyloidosis, IVSd thickness and achievement of deep haematologic response pre-transplant profoundly impact patient survival
    corecore