72 research outputs found
DNA Methylation Signatures within the Human Brain
DNA methylation is a heritable modification of genomic DNA central to development, imprinting, transcriptional regulation, chromatin structure, and overall genomic stability. Aberrant DNA methylation of individual genes is a hallmark of cancer and has been shown to play an important role in neurological disorders such as Rett syndrome. Here, we asked whether normal DNA methylation might distinguish individual brain regions. We determined the quantitative DNA methylation levels of 1,505 CpG sites representing 807 genes with diverse functions, including proliferation and differentiation, previously shown to be implicated in human cancer. We initially analyzed 76 brain samples representing cerebral cortex (n=35), cerebellum (n=34), and pons (n=7), along with liver samples (n=3) from 43 individuals. Unsupervised hierarchical analysis showed clustering of 33 of 35 cerebra distinct from the clustering of 33 of 34 cerebella, 7 of 7 pons, and all 3 livers. By use of comparative marker selection and permutation testing, 156 loci representing 118 genes showed statistically significant differences—a ⩾17% absolute change in DNA methylation (P<.004)—among brain regions. These results were validated for all six genes tested in a replicate set of 57 samples. Our data suggest that DNA methylation signatures distinguish brain regions and may help account for region-specific functional specialization
Temporal proteomic profiling of postnatal human cortical development.
Healthy cortical development depends on precise regulation of transcription and translation. However, the dynamics of how proteins are expressed, function and interact across postnatal human cortical development remain poorly understood. We surveyed the proteomic landscape of 69 dorsolateral prefrontal cortex samples across seven stages of postnatal life and integrated these data with paired transcriptome data. We detected 911 proteins by liquid chromatography-mass spectrometry, and 83 were significantly associated with postnatal age (FDR < 5%). Network analysis identified three modules of co-regulated proteins correlated with age, including two modules with increasing expression involved in gliogenesis and NADH metabolism and one neurogenesis-related module with decreasing expression throughout development. Integration with paired transcriptome data revealed that these age-related protein modules overlapped with RNA modules and displayed collinear developmental trajectories. Importantly, RNA expression profiles that are dynamically regulated throughout cortical development display tighter correlations with their respective translated protein expression compared to those RNA profiles that are not. Moreover, the correspondence between RNA and protein expression significantly decreases as a function of cortical aging, especially for genes involved in myelination and cytoskeleton organization. Finally, we used this data resource to elucidate the functional impact of genetic risk loci for intellectual disability, converging on gliogenesis, myelination and ATP-metabolism modules in the proteome and transcriptome. We share all data in an interactive, searchable companion website. Collectively, our findings reveal dynamic aspects of protein regulation and provide new insights into brain development, maturation, and disease
Phenotypic screen for oxygen consumption rate identifies an anti-cancer naphthoquinone that induces mitochondrial oxidative stress.
A hallmark of cancer cells is their ability to reprogram nutrient metabolism. Thus, disruption to this phenotype is a potential avenue for anti-cancer therapy. Herein we used a phenotypic chemical library screening approach to identify molecules that disrupted nutrient metabolism (by increasing cellular oxygen consumption rate) and were toxic to cancer cells. From this screen we discovered a 1,4-Naphthoquinone (referred to as BH10) that is toxic to a broad range of cancer cell types. BH10 has improved cancer-selective toxicity compared to doxorubicin, 17-AAG, vitamin K3, and other known anti-cancer quinones. BH10 increases glucose oxidation via both mitochondrial and pentose phosphate pathways, decreases glycolysis, lowers GSH:GSSG and NAPDH/NAPD+ ratios exclusively in cancer cells, and induces necrosis. BH10 targets mitochondrial redox defence as evidenced by increased mitochondrial peroxiredoxin 3 oxidation and decreased mitochondrial aconitase activity, without changes in markers of cytosolic or nuclear damage. Over-expression of mitochondria-targeted catalase protects cells from BH10-mediated toxicity, while the thioredoxin reductase inhibitor auranofin synergistically enhances BH10-induced peroxiredoxin 3 oxidation and cytotoxicity. Overall, BH10 represents a 1,4-Naphthoquinone with an improved cancer-selective cytotoxicity profile via its mitochondrial specificity
Glucocorticoid Receptor 1B and 1C mRNA Transcript Alterations in Schizophrenia and Bipolar Disorder, and Their Possible Regulation by GR Gene Variants
Abnormal patterns of HPA axis activation, under basal conditions and in response to stress, are found in individuals with schizophrenia and bipolar disorder. Altered glucocorticoid receptor (GR) mRNA and protein expression in the dorsolateral prefrontal cortex (DLPFC) in psychiatric illness have also been reported, but the cause of these abnormalities is not known. We quantified expression of GR mRNA transcript variants which employ different 5′ promoters, in 35 schizophrenia cases, 31 bipolar disorder cases and 34 controls. We also explored whether sequence variation within the NR3C1 (GR) gene is related to GR mRNA variant expression. Total GR mRNA was decreased in the DLPFC in schizophrenia cases relative to controls (15.1%, p<0.0005) and also relative to bipolar disorder cases (8.9%, p<0.05). GR-1B mRNA was decreased in schizophrenia cases relative to controls (20.2%, p<0.05), while GR-1C mRNA was decreased in both schizophrenia and bipolar disorder cases relative to controls (16.1% and 17.2% respectively, both p<0.005). A dose-dependent effect of rs10052957 genotype on GR-1B mRNA expression was observed, where CC homozygotes displayed 18.4% lower expression than TC heterozygotes (p<0.05), and 31.8% lower expression than TT homozygotes (p<0.005). Similarly, a relationship between rs6190 (R23K) genotype and GR-1C expression was seen, with 24.8% lower expression in GG homozygotes than GA heterozygotes (p<0.01). We also observed an effect of rs41423247 (Bcl1) SNP on expression of 67 kDa GRα isoform, the most abundant GRα isoform in the DLPFC. These findings suggest possible roles for the GR-1B and GR-1C promoter regions in mediating GR gene expression changes in psychotic illness, and highlight the potential importance of sequence variation within the NR3C1 gene in modulating GR mRNA expression in the DLPFC
Genome-Wide DNA Methylation Scan in Major Depressive Disorder
While genome-wide association studies are ongoing to identify sequence variation influencing susceptibility to major depressive disorder (MDD), epigenetic marks, such as DNA methylation, which can be influenced by environment, might also play a role. Here we present the first genome-wide DNA methylation (DNAm) scan in MDD. We compared 39 postmortem frontal cortex MDD samples to 26 controls. DNA was hybridized to our Comprehensive High-throughput Arrays for Relative Methylation (CHARM) platform, covering 3.5 million CpGs. CHARM identified 224 candidate regions with DNAm differences >10%. These regions are highly enriched for neuronal growth and development genes. Ten of 17 regions for which validation was attempted showed true DNAm differences; the greatest were in PRIMA1, with 12–15% increased DNAm in MDD (p = 0.0002–0.0003), and a concomitant decrease in gene expression. These results must be considered pilot data, however, as we could only test replication in a small number of additional brain samples (n = 16), which showed no significant difference in PRIMA1. Because PRIMA1 anchors acetylcholinesterase in neuronal membranes, decreased expression could result in decreased enzyme function and increased cholinergic transmission, consistent with a role in MDD. We observed decreased immunoreactivity for acetylcholinesterase in MDD brain with increased PRIMA1 DNAm, non-significant at p = 0.08
Developmental changes in human dopamine neurotransmission: cortical receptors and terminators
<p>Abstract</p> <p>Background</p> <p>Dopamine is integral to cognition, learning and memory, and dysfunctions of the frontal cortical dopamine system have been implicated in several developmental neuropsychiatric disorders. The dorsolateral prefrontal cortex (DLPFC) is critical for working memory which does not fully mature until the third decade of life. Few studies have reported on the normal development of the dopamine system in human DLPFC during postnatal life. We assessed pre- and postsynaptic components of the dopamine system including tyrosine hydroxylase, the dopamine receptors (D1, D2 short and D2 long isoforms, D4, D5), catechol-<it>O</it>-methyltransferase, and monoamine oxidase (A and B) in the developing human DLPFC (6 weeks -50 years).</p> <p>Results</p> <p>Gene expression was first analysed by microarray and then by quantitative real-time PCR. Protein expression was analysed by western blot. Protein levels for tyrosine hydroxylase peaked during the first year of life (p < 0.001) then gradually declined to adulthood. Similarly, mRNA levels of dopamine receptors D2S (p < 0.001) and D2L (p = 0.003) isoforms, monoamine oxidase A (p < 0.001) and catechol-<it>O</it>-methyltransferase (p = 0.024) were significantly higher in neonates and infants as was catechol-<it>O</it>-methyltransferase protein (32 kDa, p = 0.027). In contrast, dopamine D1 receptor mRNA correlated positively with age (p = 0.002) and dopamine D1 receptor protein expression increased throughout development (p < 0.001) with adults having the highest D1 protein levels (p ≤ 0.01). Monoamine oxidase B mRNA and protein (p < 0.001) levels also increased significantly throughout development. Interestingly, dopamine D5 receptor mRNA levels negatively correlated with age (r = -0.31, p = 0.018) in an expression profile opposite to that of the dopamine D1 receptor.</p> <p>Conclusions</p> <p>We find distinct developmental changes in key components of the dopamine system in DLPFC over postnatal life. Those genes that are highly expressed during the first year of postnatal life may influence and orchestrate the early development of cortical neural circuitry while genes portraying a pattern of increasing expression with age may indicate a role in DLPFC maturation and attainment of adult levels of cognitive function.</p
Effects of typical and atypical antipsychotic drugs on gene expression profiles in the liver of schizophrenia subjects
<p>Abstract</p> <p>Background</p> <p>Although much progress has been made on antipsychotic drug development, precise mechanisms behind the action of typical and atypical antipsychotics are poorly understood.</p> <p>Methods</p> <p>We performed genome-wide expression profiling to study effects of typical antipsychotics and atypical antipsychotics in the postmortem liver of schizophrenia patients using microarrays (Affymetrix U133 plus2.0). We classified the subjects into typical antipsychotics (n = 24) or atypical antipsychotics (n = 26) based on their medication history, and compared gene expression profiles with unaffected controls (n = 34). We further analyzed individual antipsychotic effects on gene expression by sub-classifying the subjects into four major antipsychotic groups including haloperidol, phenothiazines, olanzapine and risperidone.</p> <p>Results</p> <p>Typical antipsychotics affected genes associated with nuclear protein, stress responses and phosphorylation, whereas atypical antipsychotics affected genes associated with golgi/endoplasmic reticulum and cytoplasm transport. Comparison between typical antipsychotics and atypical antipsychotics further identified genes associated with lipid metabolism and mitochondrial function. Analyses on individual antipsychotics revealed a set of genes (151 transcripts, FDR adjusted p < 0.05) that are differentially regulated by four antipsychotics, particularly by phenothiazines, in the liver of schizophrenia patients.</p> <p>Conclusion</p> <p>Typical antipsychotics and atypical antipsychotics affect different genes and biological function in the liver. Typical antipsychotic phenothiazines exert robust effects on gene expression in the liver that may lead to liver toxicity. The genes found in the current study may benefit antipsychotic drug development with better therapeutic and side effect profiles.</p
Developmental Patterns of Doublecortin Expression and White Matter Neuron Density in the Postnatal Primate Prefrontal Cortex and Schizophrenia
Postnatal neurogenesis occurs in the subventricular zone and dentate gyrus, and evidence suggests that new neurons may be present in additional regions of the mature primate brain, including the prefrontal cortex (PFC). Addition of new neurons to the PFC implies local generation of neurons or migration from areas such as the subventricular zone. We examined the putative contribution of new, migrating neurons to postnatal cortical development by determining the density of neurons in white matter subjacent to the cortex and measuring expression of doublecortin (DCX), a microtubule-associated protein involved in neuronal migration, in humans and rhesus macaques. We found a striking decline in DCX expression (human and macaque) and density of white matter neurons (humans) during infancy, consistent with the arrival of new neurons in the early postnatal cortex. Considering the expansion of the brain during this time, the decline in white matter neuron density does not necessarily indicate reduced total numbers of white matter neurons in early postnatal life. Furthermore, numerous cells in the white matter and deep grey matter were positive for the migration-associated glycoprotein polysialiated-neuronal cell adhesion molecule and GAD65/67, suggesting that immature migrating neurons in the adult may be GABAergic. We also examined DCX mRNA in the PFC of adult schizophrenia patients (n = 37) and matched controls (n = 37) and did not find any difference in DCX mRNA expression. However, we report a negative correlation between DCX mRNA expression and white matter neuron density in adult schizophrenia patients, in contrast to a positive correlation in human development where DCX mRNA and white matter neuron density are higher earlier in life. Accumulation of neurons in the white matter in schizophrenia would be congruent with a negative correlation between DCX mRNA and white matter neuron density and support the hypothesis of a migration deficit in schizophrenia
Putative psychosis genes in the prefrontal cortex: combined analysis of gene expression microarrays
<p>Abstract</p> <p>Background</p> <p>Recent studies have shown similarities between schizophrenia and bipolar disorder in phenotypes and in genotypes, and those studies have contributed to an ongoing re-evaluation of the traditional dichotomy between schizophrenia and bipolar disorder. Bipolar disorder with psychotic features may be closely related to schizophrenia and therefore, psychosis may be an alternative phenotype compared to the traditional diagnosis categories.</p> <p>Methods</p> <p>We performed a cross-study analysis of 7 gene expression microarrays that include both psychosis and non-psychosis subjects. These studies include over 400 microarray samples (163 individual subjects) on 3 different Affymetrix microarray platforms.</p> <p>Results</p> <p>We found that 110 transcripts are differentially regulated (p < 0.001) in psychosis after adjusting for confounding variables with a multiple regression model. Using a quantitative PCR, we validated a set of genes such as up-regulated metallothioneins (MT1E, MT1F, MT1H, MT1K, MT1X, MT2A and MT3) and down-regulated neuropeptides (SST, TAC1 and NPY) in the dorsolateral prefrontal cortex of psychosis patients.</p> <p>Conclusion</p> <p>This study demonstrates the advantages of cross-study analysis in detecting consensus changes in gene expression across multiple microarray studies. Differential gene expression between individuals with and without psychosis suggests that psychosis may be a useful phenotypic variable to complement the traditional diagnosis categories.</p
Gene expression in the prefrontal cortex during adolescence: implications for the onset of schizophrenia
<p>Abstract</p> <p>Background</p> <p>Many critical maturational processes take place in the human brain during postnatal development. In particular, the prefrontal cortex does not reach maturation until late adolescence and this stage is associated with substantial white matter volume increases. Patients with schizophrenia and other major psychiatric disorders tend to first present with overt symptoms during late adolescence/early adulthood and it has been proposed that this developmental stage represents a "window of vulnerability".</p> <p>Methods</p> <p>In this study we used whole genome microarrays to measure gene expression in post mortem prefrontal cortex tissue from human individuals ranging in age from 0 to 49 years. To identify genes specifically altered in the late adolescent period, we applied a template matching procedure. Genes were identified which showed a significant correlation to a template showing a peak of expression between ages 15 and 25.</p> <p>Results</p> <p>Approximately 2000 genes displayed an expression pattern that was significantly correlated (positively or negatively) with the template. In the majority of cases, these genes in fact reached a plateau during adolescence with only subtle changes thereafter. These include a number of genes previously associated with schizophrenia including the susceptibility gene neuregulin 1 (NRG1). Functional profiling revealed peak expression in late adolescence for genes associated with energy metabolism and protein and lipid synthesis, together with decreases for genes involved in glutamate and neuropeptide signalling and neuronal development/plasticity. Strikingly, eight myelin-related genes previously found decreased in schizophrenia brain tissue showed a peak in their expression levels in late adolescence, while the single myelin gene reported increased in patients with schizophrenia was decreased in late adolescence.</p> <p>Conclusion</p> <p>The observed changes imply that molecular mechanisms critical for adolescent brain development are disturbed in schizophrenia patients.</p
- …