6 research outputs found
Quantum Breathers in a Nonlinear Lattice
We study nonlinear phonon excitations in a one-dimensional quantum nonlinear
lattice model using numerical exact diagonalization. We find that multi-phonon
bound states exist as eigenstates which are natural counterparts of breather
solutions of classical nonlinear systems. In a translationally invariant
system, these quantum breather states form particle-like bands and are
characterized by a finite correlation length. The dynamic structure factor has
significant intensity for the breather states, with a corresponding quenching
of the neighboring bands of multi-phonon extended states.Comment: 4 pages, RevTex, 4 postscript figures, Physical Relview Letters (in
press
Soliton excitations in halogen-bridged mixed-valence binuclear metal complexes
Motivated by recent stimulative observations in halogen (X)-bridged binuclear
transition-metal (M) complexes, which are referred to as MMX chains, we study
solitons in a one-dimensional three-quarter-filled charge-density-wave system
with both intrasite and intersite electron-lattice couplings. Two distinct
ground states of MMX chains are reproduced and the soliton excitations on them
are compared. In the weak-coupling region, all the solitons are degenerate to
each other and are uniquely scaled by the band gap, whereas in the
strong-coupling region, they behave differently deviating from the scenario in
the continuum limit. The soliton masses are calculated and compared with those
for conventional mononuclear MX chains.Comment: 9 pages, 10 figures embedded, to be published in J. Phys. Soc. Jpn.
71, No. 1 (2002
Nonadiabatic effects in a generalized Jahn-Teller lattice model: heavy and light polarons, pairing and metal-insulator transition
The ground state polaron potential of 1D lattice of two-level molecules with
spinless electrons and two Einstein phonon modes with quantum phonon-assisted
transitions between the levels is found anharmonic in phonon displacements. The
potential shows a crossover from two nonequivalent broad minima to a single
narrow minimum corresponding to the level positions in the ground state.
Generalized variational approach implies prominent nonadiabatic effects:(i) In
the limit of the symmetric E-e Jahn- Teller situation they cause transition
between the regime of the predominantly one-level "heavy" polaron and a "light"
polaron oscillating between the levels due to phonon assistance with almost
vanishing polaron displacement. It implies enhancement of the electron transfer
due to decrease of the "heavy" polaron mass (undressing) at the point of the
transition. Pairing of "light" polarons due to exchange of virtual phonons
occurs. Continuous transition to new energy ground state close to the
transition from "heavy" polaron phase to "light" (bi)polaron phase occurs. In
the "heavy" phase, there occurs anomalous (anharmonic) enhancements of quantum
fluctuations of the phonon coordinate, momentum and their product as functions
of the effective coupling. (ii) Dependence of the polaron mass on the optical
phonon frequency appears.(iii) Rabi oscillations significantly enhance quantum
shift of the insulator-metal transition line to higher values of the critical
effective e-ph coupling supporting so the metallic phase. In the E-e JT case,
insulator-metal transition coincide with the transition between the "heavy" and
the "light" (bi)polaron phase at certain (strong) effective e-ph interaction.Comment: Paper in LaTex format (file jtseptx.tex) and 9 GIF-figures
(ppic_1.gif,...ppic_9.gif
Reference Force Field and CDW Amplitude of Mixed-Valence Halogen-Bridged Pt Complexes
The spectroscopic effects of electron-phonon coupling in mixed-valence
chlorine-bridged Pt chains complexes are investigated through a parallel
infrared and Raman study of three compounds with decreasing Pt-Pt distance
along the chain. The e-ph interaction is analyzed in terms of the
Herzberg-Teller coupling scheme. We take into account the quadratic term and
define a precise reference state. The force field relevant to this state is
constructed, whereas the electronic structure is analyzed in terms of a simple
phenomenological model, singling out a trimeric unit along the chain. In this
way we are able to account for all the available optical data of the three
compounds, and to estimate the relevant microscopic parameters, such as the
e-ph coupling constants and the CDW amplitude.Comment: 10 pages, compressed postscript, 6 Tables and 5 Figures also in a
compressed ps.Z file. Revision is in the submission format only (postscript
instead of tex