56,223 research outputs found
Compatibility of neutron star masses and hyperon coupling constants
It is shown that the modern equations of state for neutron star matter based
on microscopic calculations of symmetric and asymmetric nuclear matter are
compatible with the lower bound on the maximum neutron-star mass for a certain
range of hyperon coupling constants, which are constrained by the binding
energies of hyperons in symmetric nuclear matter. The hyperons are included by
means of the relativistic Hartree-- or Hartree--Fock approximation. The
obtained couplings are also in satisfactory agreement with hypernuclei data in
the relativistic Hartree scheme. Within the relativistic Hartree--Fock
approximation hypernuclei have not been investigated so far.Comment: 12 pages, 3 figures. Dedicated to Prof. Georg Suessmann on the
occasion of his 70th birthday. To be published in Zeitschrift fuer
Naturforschung
Symmetric and asymmetric nuclear matter in the relativistic approach at finite temperatures
The properties of hot matter are studied in the frame of the relativistic
Brueckner-Hartree-Fock theory. The equations are solved self-consistently in
the full Dirac space. For the interaction we used the potentials given by
Brockmann and Machleidt. The obtained critical temperatures are smaller than in
most of the nonrelativistic investigations. We also calculated the
thermodynamic properties of hot matter in the relativistic Hartree--Fock
approximation, where the force parameters were adjusted to the outcome of the
relativistic Brueckner--Hartree--Fock calculations at zero temperature. Here,
one obtains higher critical temperatures, which are comparable with other
relativistic calculations in the Hartree scheme.Comment: 8 pages, 9 figures, submitted in a shorter version to Phys. Rev.
Neutron star properties in the Thomas-Fermi model
The modern nucleon-nucleon interaction of Myers and Swiatecki, adjusted to
the properties of finite nuclei, the parameters of the mass formula, and the
behavior of the optical potential is used to calculate the properties of
--equilibrated neutron star matter, and to study the impact of this
equation of state on the properties of (rapidly rotating) neutron stars and
their cooling behavior. The results are in excellent agreement with the outcome
of calculations performed for a broad collection of sophisticated
nonrelativistic as well as relativistic models for the equation of state.Comment: 23 pages, LaTeX, 15 ps-figure
Vortices, zero modes and fractionalization in bilayer-graphene exciton condensate
A real-space formulation is given for the recently discussed exciton
condensate in a symmetrically biased graphene bilayer. We show that in the
continuum limit an oddly-quantized vortex in this condensate binds exactly one
zero mode per valley index of the bilayer. In the full lattice model the zero
modes are split slightly due to intervalley mixing. We support these results by
an exact numerical diagonalization of the lattice Hamiltonian. We also discuss
the effect of the zero modes on the charge content of these vortices and deduce
some of their interesting properties.Comment: (v2) A typo in Fig. 1 and a slight error in Eq. (4) corrected; all
the main results and conclusions remain unchange
Checkerboard order in the t--J model on the square lattice
We propose that the inhomogeneous patterns seen by STM in some underdoped
superconducting cuprates could be related to a bond-order-wave instability of
the staggered flux state, one of the most studied "normal" state proposed to
compete with the d-wave RVB superconductor. A checkerboard pattern is obtained
by a Gutzwiller renormalized mean-field theory of the t-J model for doping
around 1/8. It is found that the charge modulation is always an order of
magnitude smaller than the bond-order modulations. This is confirmed by an
exact optimization of the wavefunction by a variational Monte Carlo scheme. The
numerical estimates of the order parameters are however found to be strongly
reduced w.r.t their mean-field values
- âŠ