2,506 research outputs found
Multilingual education and the politics of language in Luxembourg
This volume revisits the issue of language contact and conflict in the Low Countries across space and time
Percolation and jamming in random sequential adsorption of linear segments on square lattice
We present the results of study of random sequential adsorption of linear
segments (needles) on sites of a square lattice. We show that the percolation
threshold is a nonmonotonic function of the length of the adsorbed needle,
showing a minimum for a certain length of the needles, while the jamming
threshold decreases to a constant with a power law. The ratio of the two
thresholds is also nonmonotonic and it remains constant only in a restricted
range of the needles length. We determine the values of the correlation length
exponent for percolation, jamming and their ratio
Fictitious Magnetic Resonance by Quasi-Electrostatic Field
We propose a new kind of spin manipulation method using a {\it fictitious}
magnetic field generated by a quasi-electrostatic field. The method can be
applicable to every atom with electron spins and has distinct advantages of
small photon scattering rate and local addressability. By using a
laser as a quasi-electrostatic field, we have experimentally demonstrated the
proposed method by observing the Rabi-oscillation of the ground state hyperfine
spin F=1 of the cold atoms and the Bose-Einstein condensate.Comment: 5 pages, 5 figure
The failure of microglia to digest developmental apoptotic cells contributes to the pathology of RNASET2-deficient leukoencephalopathy
The contribution of microglia in neurological disorders is emerging as a leading disease driver rather than a consequence of pathology. RNAseT2‐deficient leukoencephalopathy is a severe childhood white matter disorder affecting patients in their first year of life and mimicking a cytomegalovirus brain infection. The early onset and resemblance of the symptoms to a viral infection suggest an inflammatory and embryonic origin of the pathology. There are no treatments available for this disease as our understanding of the cellular drivers of the pathology are still unknown. In this study, using a zebrafish mutant for the orthologous rnaset2 gene, we have identified an inflammatory signature in early development and an antiviral immune response in mature adult brains. Using the optical transparency and the ex utero development of the zebrafish larvae we studied immune cell behavior during brain development and identified abnormal microglia as an early marker of pathology. Live imaging and electron microscopy identified that mutant microglia displayed an engorged morphology and were filled with undigested apoptotic cells and undigested substrate. Using microglia‐specific depletion and rescue experiments, we identified microglia as drivers of this embryonic phenotype and potential key cellular player in the pathology of RNAseT2‐deficient leukoencephalopathy. Our zebrafish model also presented with reduced survival and locomotor defects, therefore recapitulating many aspects of the human disease. Our study therefore placed our rnaset2 mutant at the forefront of leukodystrophy preclinical models and highlighted tissue‐specific approaches as future therapeutic avenues
Failure to clear developmental apoptosis contributes to the pathology of RNASET2-deficient leukoencephalopathy
The contribution of microglia in neurological disorders is emerging as a leading driver rather than a consequence of pathology. RNAseT2-deficient leukoencephalopathy is a severe childhood white matter disorder affecting patients in their first year of life and mimics a cytomegalovirus brain infection. The early onset and resemblance of the symptoms to an immune response suggest an inflammatory and embryonic origin of the pathology. In this study, we identify deficient microglia as an early marker of pathology. Using the ex utero development and the optical transparency of an rnaset2-deficient zebrafish model, we found that dysfunctional microglia fail to clear apoptotic neurons during brain development. This was associated with increased number of apoptotic cells and behavioural defects lasting into adulthood. This zebrafish model recapitulates all aspect of the human disease to be used as a robust preclinical model. Using microglia-specific depletion and rescue experiments, we identified microglia as potential drivers of the pathology and highlight tissue-specific approaches as future therapeutic avenues
Dynamics of Excited Electrons in Copper and Ferromagnetic Transition Metals: Theory and Experiment
Both theoretical and experimental results for the dynamics of photoexcited
electrons at surfaces of Cu and the ferromagnetic transition metals Fe, Co, and
Ni are presented. A model for the dynamics of excited electrons is developed,
which is based on the Boltzmann equation and includes effects of
photoexcitation, electron-electron scattering, secondary electrons (cascade and
Auger electrons), and transport of excited carriers out of the detection
region. From this we determine the time-resolved two-photon photoemission
(TR-2PPE). Thus a direct comparison of calculated relaxation times with
experimental results by means of TR-2PPE becomes possible. The comparison
indicates that the magnitudes of the spin-averaged relaxation time \tau and of
the ratio \tau_\uparrow/\tau_\downarrow of majority and minority relaxation
times for the different ferromagnetic transition metals result not only from
density-of-states effects, but also from different Coulomb matrix elements M.
Taking M_Fe > M_Cu > M_Ni = M_Co we get reasonable agreement with experiments.Comment: 23 pages, 11 figures, added a figure and an appendix, updated
reference
Beam Test of Silicon Strip Sensors for the ZEUS Micro Vertex Detector
For the HERA upgrade, the ZEUS experiment has designed and installed a high
precision Micro Vertex Detector (MVD) using single sided micro-strip sensors
with capacitive charge division. The sensors have a readout pitch of 120
microns, with five intermediate strips (20 micron strip pitch). An extensive
test program has been carried out at the DESY-II testbeam facility. In this
paper we describe the setup developed to test the ZEUS MVD sensors and the
results obtained on both irradiated and non-irradiated single sided micro-strip
detectors with rectangular and trapezoidal geometries. The performances of the
sensors coupled to the readout electronics (HELIX chip, version 2.2) have been
studied in detail, achieving a good description by a Monte Carlo simulation.
Measurements of the position resolution as a function of the angle of incidence
are presented, focusing in particular on the comparison between standard and
newly developed reconstruction algorithms.Comment: 41 pages, 21 figures, 2 tables, accepted for publication in NIM
Vortex dynamics for two-dimensional XY models
Two-dimensional XY models with resistively shunted junction (RSJ) dynamics
and time dependent Ginzburg-Landau (TDGL) dynamics are simulated and it is
verified that the vortex response is well described by the Minnhagen
phenomenology for both types of dynamics. Evidence is presented supporting that
the dynamical critical exponent in the low-temperature phase is given by
the scaling prediction (expressed in terms of the Coulomb gas temperature
and the vortex renormalization given by the dielectric constant
) both for RSJ and TDGL
and that the nonlinear IV exponent a is given by a=z+1 in the low-temperature
phase. The results are discussed and compared with the results of other recent
papers and the importance of the boundary conditions is emphasized.Comment: 21 pages including 15 figures, final versio
Antimicrobials: a global alliance for optimizing their rational use in intra-abdominal infections (agora)
Intra-abdominal infections (IAI) are an important cause of morbidity and are frequently associated with poor prognosis, particularly in high-risk patients. The cornerstones in the management of complicated IAIs are timely effective source control with app1133132sem informaçãosem informaçã
The relativistic Sagnac Effect: two derivations
The phase shift due to the Sagnac Effect, for relativistic matter and
electromagnetic beams, counter-propagating in a rotating interferometer, is
deduced using two different approaches. From one hand, we show that the
relativistic law of velocity addition leads to the well known Sagnac time
difference, which is the same independently of the physical nature of the
interfering beams, evidencing in this way the universality of the effect.
Another derivation is based on a formal analogy with the phase shift induced by
the magnetic potential for charged particles travelling in a region where a
constant vector potential is present: this is the so called Aharonov-Bohm
effect. Both derivations are carried out in a fully relativistic context, using
a suitable 1+3 splitting that allows us to recognize and define the space where
electromagnetic and matter waves propagate: this is an extended 3-space, which
we call "relative space". It is recognized as the only space having an actual
physical meaning from an operational point of view, and it is identified as the
'physical space of the rotating platform': the geometry of this space turns out
to be non Euclidean, according to Einstein's early intuition.Comment: 49 pages, LaTeX, 3 EPS figures. Revised (final) version, minor
corrections; to appear in "Relativity in Rotating Frames", ed. G. Rizzi and
M.L. Ruggiero, Kluwer Academic Publishers, Dordrecht, (2003). See also
http://digilander.libero.it/solciclo
- …