20,100 research outputs found

    LDA+Gutzwiller Method for Correlated Electron Systems

    Full text link
    Combining the density functional theory (DFT) and the Gutzwiller variational approach, a LDA+Gutzwiller method is developed to treat the correlated electron systems from {\it ab-initio}. All variational parameters are self-consistently determined from total energy minimization. The method is computationally cheaper, yet the quasi-particle spectrum is well described through kinetic energy renormalization. It can be applied equally to the systems from weakly correlated metals to strongly correlated insulators. The calculated results for SrVO3_3, Fe, Ni and NiO, show dramatic improvement over LDA and LDA+U.Comment: 4 pages, 3 figures, 1 tabl

    Eksperimentalna plinska komora

    Get PDF
    There are essentially two methods for preparing known concentrations of gases or vapours in air: the static and the dynamic method. The static method is more reliable. However, there is a serious drawback to the static method: the chambers used for this purpose are expensive. As such equipment is rather rare in European industrial hygiene laboratories it might be of interest to present here some data on the design and operation of an experimental gas chamber built in the Institute of Industrial Hygiene in Zagreb.Eksperimentalna plinska komor

    Analysis of aggregated tick returns: evidence for anomalous diffusion

    Full text link
    In order to investigate the origin of large price fluctuations, we analyze stock price changes of ten frequently traded NASDAQ stocks in the year 2002. Though the influence of the trading frequency on the aggregate return in a certain time interval is important, it cannot alone explain the heavy tailed distribution of stock price changes. For this reason, we analyze intervals with a fixed number of trades in order to eliminate the influence of the trading frequency and investigate the relevance of other factors for the aggregate return. We show that in tick time the price follows a discrete diffusion process with a variable step width while the difference between the number of steps in positive and negative direction in an interval is Gaussian distributed. The step width is given by the return due to a single trade and is long-term correlated in tick time. Hence, its mean value can well characterize an interval of many trades and turns out to be an important determinant for large aggregate returns. We also present a statistical model reproducing the cumulative distribution of aggregate returns. For an accurate agreement with the empirical distribution, we also take into account asymmetries of the step widths in different directions together with crosscorrelations between these asymmetries and the mean step width as well as the signs of the steps.Comment: 9 pages, 10 figures, typos correcte

    Baryon Current Matrix Elements in a Light-Front Framework

    Full text link
    Current matrix elements and observables for electro- and photo-excitation of baryons from the nucleon are studied in a light-front framework. Relativistic effects are estimated by comparison to a nonrelativistic model, where we use simple basis states to represent the baryon wavefunctions. Sizeable relativistic effects are found for certain transitions, for example, to radial excitations such as that conventionally used to describe to the Roper resonance. A systematic study shows that the violation of rotational covariance of the baryon transition matrix elements stemming from the use of one-body currents is generally small.Comment: 32 pages, LaTeX, 10 postscript figures, uses epsf.sty; figures uuencoded with uufiles (or available by request in .ps or hardcopy form

    Neutron irradiation of coated conductors

    Full text link
    Various commercial coated conductors were irradiated with fast neutrons in order to introduce randomly distributed, uncorrelated defects which increase the critical current density, Jc, in a wide temperature and field range. The Jc-anisotropy is significantly reduced and the angular dependence of Jc does not obey the anisotropic scaling approach. These defects enhance the irreversibility line in not fully optimized tapes, but they do not in state-of-the-art conductors. Neutron irradiation provides a clear distinction between the low field region, where Jc is limited by the grain boundaries, and the high field region, where depinning leads to dissipation

    Gas-Diffusion Electrodes for Carbon-Dioxide Reduction: A New Paradigm

    Get PDF
    Significant advances have been made in recent years discovering new electrocatalysts and developing a fundamental understanding of electrochemical CO_2 reduction processes. This field has progressed to the point that efforts can now focus on translating this knowledge toward the development of practical CO_2 electrolyzers, which have the potential to replace conventional petrochemical processes as a sustainable route to produce fuels and chemicals. In this Perspective, we take a critical look at the progress in incorporating electrochemical CO_2 reduction catalysts into practical device architectures that operate using vapor-phase CO_2 reactants, thereby overcoming intrinsic limitations of aqueous-based systems. Performance comparison is made between state-of-the-art CO_2 electrolyzers and commercial H_2O electrolyzers—a well-established technology that provides realistic performance targets. Beyond just higher rates, vapor-fed reactors represent new paradigms for unprecedented control of local reaction conditions, and we provide a perspective on the challenges and opportunities for generating fundamental knowledge and achieving technological progress toward the development of practical CO_2 electrolyzers

    Cooling of a New Born Compact Star with QCD Phase Transition

    Full text link
    We study the cooling behaviour of an isolated strange quark star, using an equation of state derived from perturbative QCD up to second order in strong coupling constant, and we compare it with that of a neutron star. After an initial rapid cooling, a quark star may undergo the QCD phase transition to become a neutron star. We propose several signatures for such a scenario: a large amount of energy can be released due to latent heat, a long duration γ\gamma-ray source, and a second neutrino burst after a supernova explosion.Comment: 12 pages, 11 figures, 4 tables. Deleted a section related to static structure.Very minor updated the results without changing the conclusions.This is the final submitted version after all the proof read processe

    Electroexcitation of the Roper resonance from CLAS data

    Full text link
    The helicity amplitudes of the electroexcitation of the Roper resonance on proton are extracted at 1.7 < Q2 < 4.2 GeV2 from recent high precision JLab-CLAS cross sections data and longitudinally polarized beam asymmetry for pi+ electroproduction on protons. The analysis is made using two approaches, dispersion relations and unitary isobar model, which give consistent results. It is found that the transverse helicity amplitude for the gamma* p --> P11(1440) transition, which is large and negative at Q2=0, becomes large and positive at Q2 ~ 2 GeV2, and then drops slowly with Q2. Longitudinal helicity amplitude, that was previously found from CLAS data as large and positive at Q2=0.4,0.65 GeV2, drops with Q2. These results rule out the presentation of P11(1440) as a 3qG hybrid state, and provide strong evidence in favor of this resonance as a first radial excitation of the 3q ground state.Comment: 3 pages, 2 figures, Talk on the Workshop on "The Physics of Excited Nucleons", Bonn, Germany, October 200

    Quasiparticle-like peaks, kinks, and electron-phonon coupling at the (π\pi,0) regions in the CMR oxide La22x_{2-2x}Sr1+2x_{1+2x}Mn2_{2}O7_{7}

    Full text link
    Using Angle-Resolved Photoemission (ARPES), we present the first observation of sharp quasiparticle-like peaks in a CMR manganite. We focus on the (π\pi,0) regions of k-space and study their electronic scattering rates and dispersion kinks, uncovering the critical energy scales, momentum scales, and strengths of the interactions that renormalize the electrons. To identify these bosons we measured phonon dispersions in the energy range of the kink by inelastic neutron scattering (INS), finding a good match in both energy and momentum to the oxygen bond-stretching phonons

    Studies of the limit order book around large price changes

    Full text link
    We study the dynamics of the limit order book of liquid stocks after experiencing large intra-day price changes. In the data we find large variations in several microscopical measures, e.g., the volatility the bid-ask spread, the bid-ask imbalance, the number of queuing limit orders, the activity (number and volume) of limit orders placed and canceled, etc. The relaxation of the quantities is generally very slow that can be described by a power law of exponent 0.4\approx0.4. We introduce a numerical model in order to understand the empirical results better. We find that with a zero intelligence deposition model of the order flow the empirical results can be reproduced qualitatively. This suggests that the slow relaxations might not be results of agents' strategic behaviour. Studying the difference between the exponents found empirically and numerically helps us to better identify the role of strategic behaviour in the phenomena.Comment: 19 pages, 7 figure
    corecore