19,993 research outputs found
Effect of deposition conditions and thermal annealing on the charge trapping properties of SiN[sub x] films
The density of charge trapping centers in SiNx:H films deposited by plasma enhanced chemical
vapor deposition is investigated as a function of film stoichiometry and postdeposition annealing
treatments. In the as-deposited films, the defect density is observed to increase with an increasing
N/Si ratio x in the range of 0.89–1.45, and to correlate with the N–H bond density. Following the
annealing in the temperature range of 500– 800 °C, the defect density increases for all N/Si ratios,
with the largest increase observed in the most Si rich samples. However, the defect density always
remains highest in the most N rich films. The better charge storage ability suggests the N rich films
are more suitable for the creation of negatively charged nitride films on solar cells.Financial support from
the Australian Research Council LP0883613 is gratefully
acknowledged
The major myosin-binding domain of skeletal muscle MyBP-C (C protein) resides in the COOH-terminal, immunoglobulin C2 motif.
A common feature shared by myosin-binding proteins from a wide variety of species is the presence of a variable number of related internal motifs homologous to either the Ig C2 or the fibronectin (Fn) type III repeats. Despite interest in the potential function of these motifs, no group has clearly demonstrated a function for these sequences in muscle, either intra- or extracellularly. We have completed the nucleotide sequence of the fast type isoform of MyBP-C (C protein) from chicken skeletal muscle. The deduced amino acid sequence reveals seven Ig C2 sets and three Fn type III motifs in MyBP-C. alpha-chymotryptic digestion of purified MyBP-C gives rise to four peptides. NH2-terminal sequencing of these peptides allowed us to map the position of each along the primary structure of the protein. The 28-kD peptide contains the NH2-terminal sequence of MyBP-C, including the first C2 repeat. It is followed by two internal peptides, one of 5 kD containing exclusively spacer sequences between the first and second C2 motifs, and a 95-kD fragment containing five C2 domains and three fibronectin type III motifs. The C-terminal sequence of MyBP-C is present in a 14-kD peptide which contains only the last C2 repeat. We examined the binding properties of these fragments to reconstituted (synthetic) myosin filaments. Only the COOH-terminal 14-kD peptide is capable of binding myosin with high affinity. The NH2-terminal 28-kD fragment has no myosin-binding, while the long internal 100-kD peptide shows very weak binding to myosin. We have expressed and purified the 14-kD peptide in Escherichia coli. The recombinant protein exhibits saturable binding to myosin with an affinity comparable to that of the 14-kD fragment obtained by proteolytic digestion (1/2 max binding at approximately 0.5 microM). These results indicate that the binding to myosin filaments is mainly restricted to the last 102 amino acids of MyBP-C. The remainder of the molecule (1,032 amino acids) could interact with titin, MyBP-H (H protein) or thin filament components. A comparison of the highly conserved Ig C2 domains present at the COOH-terminus of five MyBPs thus far sequenced (human slow and fast MyBP-C, human and chicken MyBP-H, and chicken MyBP-C) was used to identify residues unique to these myosin-binding Ig C2 repeats
Stochastic Cahn-Hilliard equation with singular nonlinearity and reflection
We consider a stochastic partial differential equation with logarithmic (or
negative power) nonlinearity, with one reflection at 0 and with a constraint of
conservation of the space average. The equation, driven by the derivative in
space of a space-time white noise, contains a bi-Laplacian in the drift. The
lack of the maximum principle for the bi-Laplacian generates difficulties for
the classical penalization method, which uses a crucial monotonicity property.
Being inspired by the works of Debussche and Zambotti, we use a method based on
infinite dimensional equations, approximation by regular equations and
convergence of the approximated semi-group. We obtain existence and uniqueness
of solution for nonnegative intial conditions, results on the invariant
measures, and on the reflection measures
Recommended from our members
Studies of cracking behavior in melt-processed YBCO bulk superconductors
An important phenomenon in bulk superconductors fabricated by top-seeded-melt growth (TSMG) is the formation of cracks due to the inherent brittleness of the YBa2Cu3O7-δ (Y-123) phase matrix. These form during the fabrication of the superconducting monolith and play an important role in the limitation of current flow. However, cracks may also form during cooling cycles of the sample to liquid nitrogen temperatures. In this investigation, macrocracks along the c-direction, in particular were analyzed microscopically before and after cooling. In addition we attempt to resolve the c-axis macrocrack formation pattern using the magnetoscan technique
Morse homology for the heat flow
We use the heat flow on the loop space of a closed Riemannian manifold to
construct an algebraic chain complex. The chain groups are generated by
perturbed closed geodesics. The boundary operator is defined in the spirit of
Floer theory by counting, modulo time shift, heat flow trajectories that
converge asymptotically to nondegenerate closed geodesics of Morse index
difference one.Comment: 89 pages, 3 figure
Measuring random force noise for LISA aboard the LISA Pathfinder mission
The LTP (LISA Testflight Package), to be flown aboard the ESA / NASA LISA
Pathfinder mission, aims to demonstrate drag-free control for LISA test masses
with acceleration noise below 30 fm/s^2/Hz^1/2 from 1-30 mHz. This paper
describes the LTP measurement of random, position independent forces acting on
the test masses. In addition to putting an overall upper limit for all source
of random force noise, LTP will measure the conversion of several key
disturbances into acceleration noise and thus allow a more detailed
characterization of the drag-free performance to be expected for LISA.Comment: 7 pages, 3 figures. To be published in Classical and Quantum Gravity
with the proceedings of the 2003 Amaldi Meetin
Highly indistinguishable single photons from incoherently and coherently excited GaAs quantum dots
Semiconductor quantum dots are converging towards the demanding requirements
of photonic quantum technologies. Among different systems, quantum dots with
dimensions exceeding the free-exciton Bohr radius are appealing because of
their high oscillator strengths. While this property has received much
attention in the context of cavity quantum electrodynamics, little is known
about the degree of indistinguishability of single photons consecutively
emitted by such dots and on the proper excitation schemes to achieve high
indistinguishability. A prominent example is represented by GaAs quantum dots
obtained by local droplet etching, which recently outperformed other systems as
triggered sources of entangled photon pairs. On these dots, we compare
different single-photon excitation mechanisms, and we find (i) a "phonon
bottleneck" and poor indistinguishability for conventional excitation via
excited states and (ii) photon indistinguishablilities above 90% for both
strictly resonant and for incoherent acoustic- and optical-phonon-assisted
excitation. Among the excitation schemes, optical phonon-assisted excitation
enables straightforward laser rejection without a compromise on the source
brightness together with a high photon indistinguishability
Cardiovascular and Biochemical Responses in Exercise Recuperation in Diabetic Rats
The objective of this study was to assess the cardiovascular and biochemical responses during aerobic exercise recuperation in diabetic rats. There were utilized 12 animals, of 60 days, divided in two groups: control and diabetic. On the test day, the animals performed a 60 minutes’ session of predominantly aerobic exercise, using an overload of 6% of their body’s weight. After and before the exercise, the animals had their systolic blood pressure (SBP) and heart rate (HR), lactate, glycerol and glucose measured. The animals were trained during 30 days by swimming tank, with an extra weight equivalent to 4% extra weight a 40-min session. A decrease in glucose value occurred in the diabetic animals after exercising, as well as an increase of lactate in the same group. 1’, 3’, 5’ and 7’ after the exercise, a significant reduction of HR in the diabetic group was noticed when compared with the control group, such behavior was also observed with double product (DP) together with SBP values 1’, 3’ and 5’ after the exercise. The diabetic animals’ recovery has been possibly affected by a reduction of blood flow and a reduction of energetic substrates contribution, as well as lactate clearance
Optimal Regularity for a Class of Singular Abstract Parabolic Equations
A general class of singular abstract Cauchy problems is considered which
naturally arises in applications to certain Free Boundary Problems. Existence
of an associated evolution operator characterizing its solutions is established
and is subsequently used to derive optimal regularity results. The latter are
well known to be important basic tools needed to deal with corresponding
nonlinear Cauchy Problems such as those associated to Free Boundary Problems
- …