86 research outputs found
Homologous recombination in pestiviruses: Identification of three putative novel events between different subtypes/genogroups
AbstractViruses from the genus Pestivirus of the family Flaviviridae have a non-segmented, single-stranded RNA genome and can cause diseases in animals from the order Artiodactyla. Homologous recombination is rarely reported in this virus family. To detect possible recombination events, all complete pestivirus genomes that are available in GenBank were screened using distinct algorithms to detect genetic conversions and incongruent phylogenies. Three putative recombinant viruses derived from recombination from different pestivirus subtypes/genogroups were detected: Bovine viral diarrhea virus 1 (BVDV-1) strain 3156, BVDV-2 strain JZ05-1 and Classical swine fever virus (CSFV) strain IND/UK/LAL-290. The present study demonstrated that the pestivirus classification cannot be based only on the analysis of one fragment of the genome because genetic conversions can lead to errors. The designation of the recombinant forms (RF) provides a more informative structure for the nomenclature of the genetic variant. The present work reinforces that homologous recombination occurs in pestivirus populations under natural replication and describes the first evidence of recombination in BVDV-2
Virome characterization in commercial bovine serum batches : a potentially needed testing strategy for biological products
Bovine serum has been widely used as a universal supplement in culture media and other applications, including the manufacture of biological products and the production of synthetic meat. Currently, commercial bovine serum is tested for possible viral contaminants following regional guidelines. Regulatory agencies’ established tests focused on detecting selected animal origin viruses and are based on virus isolation, immunofluorescence, and hemadsorption assays. However, these tests may fail to detect new or emerging viruses in biological products. High-throughput sequencing is a powerful option since no prior knowledge of the viral targets is required. In the present study, we evaluate the virome of seven commercial batches of bovine serum from Mexico (one batch), New Zealand (two batches), and the United States (four batches) using a specific preparation and enrichment method for pooled samples and sequencing using an Illumina platform. A variety of circular replicase-encoding single-stranded (CRESS) DNA families (Genomoviridae, Circoviridae, and Smacoviridae) was identified. Additionally, CrAssphage, a recently discovered group of bacteriophage correlated with fecal contamination, was identified in 85% of the tested batches. Furthermore, sequences representing viral families with single-stranded DNA (Parvoviridae), double-stranded DNA (Polyomaviridae and Adenoviridae), single-stranded RNA (Flaviviridae, Picornaviridae, and Retroviridae), and double-stranded RNA (Reoviridae) were identified. These results support that high-throughput sequencing associated with viral enrichment is a robust tool and should be considered an additional layer of safety when testing pooled biologicals to detect viral contaminants overlooked by the current testing protocols
Bovine leukemia viral DNA found on human breast tissue is genetically related to the cattle virus
Bovine leukemia virus (BLV) infection is widespread in cattle and associated with B cell lymphoma. In a previousstudy we demonstrated that bovine leukemia viral DNA was detected in human breast tissues and significantly associated with breast cancer. Our current study aimed to determine whether BLV DNA found in humans and cattle at the same geographical region were genetically related. DNA was extracted from the breast tissue of healthy (n = 32) or cancerous women patients (n = 27) and from the blood (n = 30) of cattle naturally infected with BLV, followed by PCR-amplification and partial nucleotide sequencing of the BLV env gene. We found that the nucleotide sequence identity between BLV env gene fragments obtained from human breast tissue and cattle blood ranged from 97.8 to 99.7% and grouped into genotype 1. Thus, our results further support the hypothesis that this virus might cause a zoonotic infection
Identification of enteric viruses circulating in a dog population with low vaccine coverage
Although the use of vaccines has controlled enteric diseases in dogs in many developedcountries, vaccine coverage is still under optimal situation in Brazil. There is a large popula-tion of nonimmunized dogs and few studies about the identification of the viruses associated with diarrhea. To address this situation, stool samples from 325 dogs were analyzed bypolymerase chain reaction for the detection of common enteric viruses such as Canine ade-novirus (CAdV), Canine coronavirus (CCoV), Canine distemper virus (CDV), Canine rotavirus (CRV)and Carnivorous protoparvovirus 1 (canine parvovirus 2; CPV-2). At least one of these specieswas detected in 56.6% (184/325) of the samples. The viruses detected most frequently ineither diarrheic or nondiarrheic dog feces were CPV-2 (54.3% of the positive samples), CDV(45.1%) and CCoV (30.4%), followed by CRV (8.2%) and CAdV (4.9%). Only one agent wasdetected in the majority of the positive samples (63%), but co-infections were present in 37%of the positive samples and mainly included CDV and CPV-2. The data presented herein canimprove the clinical knowledge in regions with low vaccine coverage and highlight the needto improve the methods used to control these infectious diseases in domestic dogs
The genetic diversity of “papillomavirome” in bovine teat papilloma lesions
Background: Papillomaviruses are small nonenveloped, circular double-stranded DNA viruses that belong to the Papillomaviridae family. To date, 29 Bos taurus papillomavirus (BPV) types have been described. Studies involving mixed BPV infections have rarely been reported in contrast to human papillomavirus (HPV), which is commonly described in numerous studies showing coinfections. Moreover, previous studies had shown that HPV coinfections increase the risk of carcinogenesis. In the present study, we used rolling-circle amplification followed by a high-throughput sequencing (RCA-HTS) approach in 23 teat papillomas from southern Brazil. Results: Eleven well-characterized BPV types and 14 putative new BPV types were genetically characterized into the Xi, Epsilon and Dyoxipapillomavirus genera according to phylogenetic analysis of the L1 gene, which expands the previous 29 BPV types to 43. Moreover, BPV coinfections were detected in the majority (56.3%) of the papilloma lesions analyzed, suggesting a genetic diverse “papillomavirome” in bovine teat warts. Conclusions: The data generated in this study support the possibility that a wide range of BPV is probably underdetected by conventional molecular detection tools, and that BPV coinfections are underestimated and probably genetic diverse. Additionally, 14 new BPV types were characterized, increasing the knowledge regarding BPV genetic diversity
First Evidence of Bovine Viral Diarrhea Virus Infection in Wild Boars
Background: The farming of wild boars has growing due to the interest of the human consumption of this exotic meat. Such a development may pose an increased risk of disease transmission between boars and domestic animals. The wild boar population has increased in South America in the last years due the absence of predator causing economic losses due to direct damage to crops and risk of disease transmission. The genus Pestivirus within the family Flaviviridae are composed by four recognized species by the International Committee on the Taxonomy of Viruses (ICTV): classical swine fever virus (CSFV), border disease virus (BDV), bovine viral diarrhea virus type 1 (BVDV-1) and 2 (BVDV-2). Other putative species denoted as atypical pesitiviruses have been reported as ‘HoBi’-like virus, giraffe pestivirus, Bungowannah pestivirus, Pronghorn antelope virus, atypical porcine pestivirus (APPV), Norwegian rat pestivirus (NrPV) and Rhinolophus affinis bat pestivirus (RaPestV-1). CSFV is commonly detected in wild boars, but despite positive serology, bovine viral diarrhea virus (BVDV) was never detected in this animal species. Thereby, the present communication describes the first detection of BVDV in the lungs of captive boars using RT-PCR and DNA sequencing.Materials, Methods & Results: Forty lung samples from farmed wild boars were collected after slaughter in a commercial abattoir. The organs were crushed separately, centrifuged, and the supernatant was stored for further analysis. The total RNA was isolated using a phenol-based protocol and RT-PCR protocol that amplified 118 bp of 5’ untranslated region (5’UTR) was carried out. One out 40 samples resulted positive. The positive sample had partial fragments of 5’UTR and N terminal autoprotease (Npro) sequenced and analyzed. The strain LV Java/2012 presented 99% of identity in 5’UTR and 98% in Npro region with a BVDV-2 previously reported in bovines in Southern Brazil. In both 5’UTR and Npro phylogenetic analysis, the strain LV Java/2015 clustered with BVDV-2 strains and was most closely related to subtype 2b identified in bovines in Southern Brazil grouping in the same terminal node.Discussion: Wild boars are commonly associated to pathogen transmission to domestic animals. This animal species is considered a reservoir of the pestivirus CSFV and important keys in CSFV control and eradication programs in Europe. Despite indirect presence of BVDV was reported in wild boars by serology tests, the direct detection of the viral agent was never reported. The present study showed the presence of BVDV-2 genomic segments obtained by RT-PCR followed by DNA sequencing in captive wild boars. The reported data suggests a possible importance of this animal species in the epidemiology of ruminant pestiviruses which could interfere in control and eradication programs of these important pathogens for cattle worldwide. The strain LV Java/2012 was closely related to BVDV-2b and presented highest identity with a strain detected in cattle from Southern Brazil. This data suggests that wild boars and bovines could be sharing this pathogen due the similarity of the strains and that both were reported in the same region. It can lead to need of inclusion of wild swines in BVDV control programs since boars can circulate between different regions and carry this pathogen to different cattle herds. The present study reported the first molecular evidence of BVDV in wild boars in the literature. The data generated herein suggests a possible importance of boars in the epidemiology of ruminant pestiviruses
Early detection of SARS-CoV-2 P.1 variant in Southern Brazil and reinfection of the same patient by P.2
Multiple variants of the Severe Acute Respiratory Syndrome coronavirus 2 virus (SARS-CoV-2) have been constantly reported across the world. The B.1.1.28 lineage has been evolving in Brazil since February 2020 and originated the P.1 variant of concern (VOC), recently named as the Gamma variant by the newly WHO nomenclature proposal, and P.2 as a variant of interest (VOI). Here we describe an early case of P.1 primary infection in Southern Brazil in late November 2020, soon after the emergence of the variant in Manaus, Northern Brazil. The same male patient was reinfected by another B.1.1.28 variant, namely P.2, in March, 2021. The genomic analysis confirmed genetically significant differences between the two viruses recovered in both infections, the P.1 lineage in the first episode and P.2 in the reinfection. Due the very early detection of P.1, we have also investigated the circulation of P.1 in the same region by differential RT-qPCR, showing that this was an isolated case of P.1 at the time of detection, and this variant has disseminated and became prominent from late January to the end of March, 2021. SARS-CoV-2 recent reports of reinfection have raised critical questions on whether and how well a first infection protects against reinfection
Genomic epidemiology of SARS-CoV-2 in Esteio, Rio Grande do Sul, Brazil
Background: Brazil is the third country most affected by Coronavirus disease-2019 (COVID-19), but viral evolution in municipality resolution is still poorly understood in Brazil and it is crucial to understand the epidemiology of viral spread. We aimed to track molecular evolution and spread of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Esteio (Southern Brazil) using phylogenetics and phylodynamics inferences from 21 new genomes in global and regional context. Importantly, the case fatality rate (CFR) in Esteio (3.26%) is slightly higher compared to the Rio Grande do Sul (RS) state (2.56%) and the entire Brazil (2.74%). Results: We provided a comprehensive view of mutations from a representative sampling from May to October 2020, highlighting two frequent mutations in spike glycoprotein (D614G and V1176F), an emergent mutation (E484K) in spike Receptor Binding Domain (RBD) characteristic of the B.1.351 and P.1 lineages, and the adjacent replacement of 2 amino acids in Nucleocapsid phosphoprotein (R203K and G204R). E484K was found in two genomes from mid-October, which is the earliest description of this mutation in Southern Brazil. Lineages containing this substitution must be subject of intense surveillance due to its association with immune evasion. We also found two epidemiologicallyrelated clusters, including one from patients of the same neighborhood. Phylogenetics and phylodynamics analysis demonstrates multiple introductions of the Brazilian most prevalent lineages (B.1.1.33 and B.1.1.248) and the establishment of Brazilian lineages ignited from the Southeast to other Brazilian regions. Conclusions: Our data show the value of correlating clinical, epidemiological and genomic information for the understanding of viral evolution and its spatial distribution over time. This is of paramount importance to better inform policy making strategies to fight COVID-19
Synthesizing the connections between environmental disturbances and zoonotic spillover
Zoonotic spillover is a phenomenon characterized by the transfer of pathogens between different animal species. Most human emerging infectious diseases originate from non-human animals, and human-related environmental disturbances are the driving forces of the emergence of new human pathogens. Synthesizing the sequence of basic events involved in the emergence of new human pathogens is important for guiding the understanding, identifi cation, and description of key aspects of human activities that can be changed to prevent new outbreaks, epidemics, and pandemics. This review synthesizes the connections between environmental disturbances and increased risk of spillover events based on the One Health perspective. Anthropogenic disturbances in the environment (e.g., deforestation, habitat fragmentation, biodiversity loss, wildlife exploitation) lead to changes in ecological niches, reduction of the dilution effect, increased contact between humans and other animals, changes in the incidence and load of pathogens in animal populations, and alterations in the abiotic factors of landscapes. These phenomena can increase the risk of spillover events and, potentially, facilitate new infectious disease outbreaks. Using Brazil as a study model, this review brings a discussion concerning anthropogenic activities in the Amazon region and their potential impacts on spillover risk and spread of emerging diseases in this region
- …