3,376 research outputs found

    A near-field study on the transition from localized to propagating plasmons on 2D nano-wedges

    Full text link
    In this manuscript we report on a near-feld study of two-dimensional plasmonic gold nano-wedges using electron energy loss spectroscopy in combination with scanning transmission electron microscopy, as well as discontinuous Galerkin time-domain computations. With increasing nano-wedge size, we observe a transition from localized surface plasmons on small nano-wedges to non-resonant propagating surface plasmon polaritons on large nano-wedges. Furthermore we demonstrate that nano-wedges with a groove cut can support localized as well as propagating plasmons in the same energy range

    Isolation and Characterization of Microbial Pathogens Found in Chickens

    Get PDF
    The bacterial content of retail chicken is a topic of growing concern. Chicken processing plants are under increasingly strict regulations to prevent contamination. Likewise, increasing controversy is being directed towards chicken farmers concerning cleanliness and the use of antibiotics in raising chickens, as it may lead to antibiotic resistance. There is legitimate concern surrounding the many possible pathogens associated with chicken, let alone the recent trend of bacteria with heightened resistance to antibiotics. This project was carried out with the purpose of the identification and characterization of bacteria found in chicken from local supermarkets. As multiple bacterial species were expected to be encountered, successful identification of at least one species was paramount for the continuation of this project prior to examining bacteria for antibiotic resistance and virulence factors

    Immunological mechanisms in specific immunotherapy

    Get PDF
    Specific immunotherapy (SIT) represents the only curative treatment of allergy and is, therefore, of particular interest for immunological and pharmacological research. The current understanding of immunological mechanisms underlying SIT focuses on regulatory T cells (T regs), which balance Th1 and Th2 effector functions. This ensures that allergens are recognized, but tolerated by the immune system. There is clear evidence that SIT restores the disturbed balance of T regs and effector cells in allergic patients. Current efforts are focused to improve SIT regimens to make them more applicable in atopy and asthma. The current review provides an overview on the mechanisms of SIT and possible adjuvant treatment strategies on the background of the T reg concep

    Photophysics, Molecular Reorientation in Solution and X-Ray Structure of a New Fluorescent Probe 1,7-Diazaperylene

    Get PDF
    A new fluorescent molecule 1,7-diazaperylene (DP) has been investigated by means of time-resolved and steady-state polarized fluorescence spectroscopy, as well as X-ray spectroscopy. Absorption and fluorescence spectra of DP in solution are similar to those of perylene. However, absorption and fluorescence spectra of 2,8-dimethoxy DP and 2,8-dipentyloxy DP in solution are red-shifted by ca. 55 nm relative to perylene. The fluorescence decay of DP is exponential with a lifetime of 5.1 ns in ethanol, 4.9 ns in glycerol and 4.3 ns in paraffin oil. The radiative lifetime in ethanol was calculated to be 6.3 ns for DP, 8.0 ns for 2,8-dimethoxy DP and 7.6 ns for 2,8-dipentyloxy DP. The calculated fluorescence quantum yields of 0.8 for DP and its alkoxy derivatives in ethanol, are in good agreement with those obtained from measurements. The calculated Förster radius is 37.2 ± 1 Å for DP and 41.9 ± 1 Å for its alkoxy derivatives in ethanol. Examining the S0 S1 transition, we obtain a limiting fluorescence anisotropy of r0 0.38 for DP and its alkoxy derivatives. The rotational rates of DP in paraffin oil and glycerol were compared to that of perylene. In paraffin oil both molecules show an almost identical biexponential decay of the fluorescence anisotropy, which is compatible with a rotational motion like an oblate ellipsoid. The fluorescence anisotropy is monoexponential for DP in glycerol, and DP appears to rotate like a spherical particle while perylene in glycerol appears to rotate like an oblate ellipsoid. Moreover, the rotational diffusion constant, corresponding to rotation about an axis in the aromatic plane (D), is the same for both DP and perylene in glycerol

    Plasma-deposited AgOx-doped TiOx coatings enable rapid antibacterial activity based on ROS generation

    Get PDF
    Abstract To enable a rapid-acting antibacterial mechanism without the release of biocidal substances, TiO2 catalysts have been considered based on the generation of reactive oxygen species (ROS). Doping with dissimilar metals generates electron-hole pairs with narrow band gaps promoting the production of ROS. Here, plasma technology is investigated to deposit Ag nano islets on defective TiOx films, stabilized by plasma postoxidation suppressing Ag ion release. Importantly, ROS generation is maintained upon storage in the dark yet with diminishing efficacy; however, it can be restored by exposure to visible light. The rapid-acting antibacterial properties are found to strongly correlate with ROS generation, which can even be maintained by functionalization with hydrophobic plasma polymer films. The cytocompatible coatings offer promising applications for implants and other medical devices

    safety, feasibility, and metabolic response

    Get PDF
    Background Intensive care unit (ICU)-acquired weakness in critically ill patients is a common and significant complication affecting the course of critical illness. Whole-body vibration is known to be effective muscle training and may be an option in diminishing weakness and muscle wasting. Especially, patients who are immobilized and not available for active physiotherapy may benefit. Until now whole-body vibration was not investigated in mechanically ventilated ICU patients. We investigated the safety, feasibility, and metabolic response of whole-body vibration in critically ill patients. Methods We investigated 19 mechanically ventilated, immobilized ICU patients. Passive range of motion was performed prior to whole-body vibration therapy held in the supine position for 15 minutes. Continuous monitoring of vital signs, hemodynamics, and energy metabolism, as well as intermittent blood sampling, took place from the start of baseline measurements up to 1 hour post intervention. We performed comparative longitudinal analysis of the phases before, during, and after intervention. Results Vital signs and hemodynamic parameters remained stable with only minor changes resulting from the intervention. No application had to be interrupted. We did not observe any adverse event. Whole-body vibration did not significantly and/or clinically change vital signs and hemodynamics. A significant increase in energy expenditure during whole-body vibration could be observed. Conclusions In our study the application of whole-body vibration was safe and feasible. The technique leads to increased energy expenditure. This may offer the chance to treat patients in the ICU with whole-body vibration. Further investigations should focus on the efficacy of whole-body vibration in the prevention of ICU- acquired weakness. Trial registration Applicability and Safety of Vibration Therapy in Intensive Care Unit (ICU) Patients. ClinicalTrials.gov NCT01286610. Registered 28 January 2011

    A new paraclinical CSF marker for hypoxia‐like tissue damage in multiple sclerosis lesions

    Get PDF
    Recent studies on the immunopathology of multiple sclerosis revealed a heterogeneity in the patterns of demyelination, suggesting interindividual differences in the mechanism responsible for myelin destruction. One of these patterns of demyelination, characterized by oligodendrocyte dystrophy and apoptosis, closely mimics myelin destruction in acute white matter ischaemia. In the course of a systematic screening for virus antigen expression in multiple sclerosis brains, we identified a monoclonal antibody against canine distemper virus, which detects a cross‐reactive endogenous brain epitope, highly expressed in this specific subtype of actively demyelinating multiple sclerosis lesions with little or no immunoreactivity in other active multiple sclerosis cases. The respective epitope, which is a phosphorylation‐dependent sequence of one or more proteins of 50, 70 and 115kDa, is also expressed in a subset of active lesions of different virus‐induced inflammatory brain diseases, but is present most prominently and consistently in acute lesions of white matter ischaemia. Its presence is significantly associated with nuclear expression of hypoxia‐inducible factor‐1α within the lesions of both inflammatory and ischaemic brain diseases. The respective epitope is liberated into the CSF and, thus, may become a useful diagnostic tool to identify clinically a defined multiple sclerosis subtyp
    • 

    corecore