4,984 research outputs found
Cosmic ray isotope measurements with a new Cerenkov X total energy telescope
Measurements of the isotopic composition of cosmic nuclei with Z = 7-20 are reported. These measurements were made with a new version of a Cerenkov x total E telescope. Path length and uniformity corrections are made to all counters to a RMS level 1%. Since the Cerenkov counter is crucial to mass measurements using the C x E technique - special care was taken to optimize the resolution of the 2.4 cm thick Pilot 425 Cerenkov counter. This counter exhibited a beta = 1 muon equivalent LED resolution of 24%, corresponding to a total of 90 p.e. collected at the 1st dynodes of the photomultiplier tubes
Cosmic ray charge and energy spectrum measurements using a new large area Cerenkov x dE/dx telescope
In September, 1981, a new 0.5 square meter ster cosmic ray telescope was flown to study the charge composition and energy spectrum of cosmic ray nuclei between 0.3 and 4 GeV/nuc. A high resolution Cerenkov counter, and three dE/dx measuring scintillation counters, including two position scintillators were contained in the telescope used for the charge and energy spectrum measurements. The analysis procedures did not require any large charge or energy dependent corrections, and absolute fluxes could be obtained to an accuracy approximately 5%. The spectral measurements made in 1981, at a time of extreme solar modulation, could be compared with measurements with a similar telescope made by our group in 1977, at a time of minimum modulation and can be used to derive absolute intensity values for the HEAO measurements made in 1979 to 80. Using both data sets precise energy spectra and abundance ratios can be derived over the entire energy range from 0.3 to greater than 15 GeV/nuc
Signatures of four-particle correlations associated with exciton-carrier interactions in coherent spectroscopy on bulk GaAs
Transient four-wave mixing studies of bulk GaAs under conditions of broad
bandwidth excitation of primarily interband transitions have enabled
four-particle correlations tied to degenerate (exciton-exciton) and
nondegenerate (exciton-carrier) interactions to be studied. Real
two-dimensional Fourier-transform spectroscopy (2DFTS) spectra reveal a complex
response at the heavy-hole exciton emission energy that varies with the
absorption energy, ranging from dispersive on the diagonal, through absorptive
for low-energy interband transitions to dispersive with the opposite sign for
interband transitions high above band gap. Simulations using a multilevel model
augmented by many-body effects provide excellent agreement with the 2DFTS
experiments and indicate that excitation-induced dephasing (EID) and
excitation-induced shift (EIS) affect degenerate and nondegenerate interactions
equivalently, with stronger exciton-carrier coupling relative to
exciton-exciton coupling by approximately an order of magnitude. These
simulations also indicate that EID effects are three times stronger than EIS in
contributing to the coherent response of the semiconductor
p, He, and C to Fe cosmic-ray primary fluxes in diffusion models: Source and transport signatures on fluxes and ratios
The propagated fluxes of proton, helium, and heavier primary cosmic-ray
species (up to Fe) are a means to indirectly access the source spectrum of
cosmic rays. We check the compatibility of the primary fluxes with the
transport parameters derived from the B/C analysis, but also if they bring
further constraints. Proton data are well described in the simplest model
defined by a power-law source spectrum and plain diffusion. They can also be
accommodated by models with, e.g., convection and/or reacceleration. There is
no need for breaks in the source spectral indices below TeV/n. Fits on
the primary fluxes alone do not provide physical constraints on the transport
parameters. If we let free the source spectrum and fix the diffusion coefficient such as to reproduce the B/C ratio, the MCMC analysis constrains
the source spectral index to be in the range for all primary
species up to Fe, regardless of the value of the diffusion slope . The
low-energy shape of the source spectrum is degenerate with the
low-energy shape of the diffusion coefficient: we find
for p and He data, but for C
to Fe primary species. This is consistent with the toy-model calculation in
which the shape of the p/He and C/O to Fe/O data is reproduced if
(no need for different slopes ). When
plotted as a function of the kinetic energy per nucleon, the low-energy p/He
ratio is shaped mostly by the modulation effect, whereas primary/O ratios are
mostly shaped by their destruction rate.Comment: 18 pages, 14 figures: accepted in A&A (1 table added
Systematic uncertainties on the cosmic-ray transport parameters: Is it possible to reconcile B/C data with delta = 1/3 or delta = 1/2?
The B/C ratio is used in cosmic-ray physics to constrain the transport
parameters. However, from the same set of data, the various published values
show a puzzling large scatter of these parameters. We investigate the impact of
using different inputs (gas density and hydrogen fraction in the Galactic disc,
source spectral shape, low-energy dependence of the diffusion coefficient, and
nuclear fragmentation cross-sections) on the best-fit values of the transport
parameters. We quantify the systematics produced when varying these inputs, and
compare them to statistical uncertainties. We discuss the consequences for the
slope of the diffusion coefficient delta. The analysis relies on the
propagation code USINE interfaced with the Minuit minimisation routines. We
find the typical systematic uncertainties to be larger than the statistical
ones. The several published values of delta (from 0.3 to 0.8) can be recovered
when varying the low-energy shape of the diffusion coefficient and the
convective wind strength. Models including a convective wind are characterised
by delta > 0.6, which cannot be reconcile with the expected theoretical values
(1/3 and 1/2). However, from a statistical point of view (chi^2 analysis),
models with both reacceleration and convection-hence large delta-are favoured.
The next favoured models in line yield delta that can be accommodated with 1/3
and 1/2, but require a strong upturn of the diffusion coefficient at low energy
(and no convection). To date, using the best statistical tools, the transport
parameter determination is still plagued by many unknowns at low energy (~
GeV/n). To disentangle between all these configurations, measurements of the
B/C ratio at TeV/n energies and/or combination with other secondary-to-primary
ratios is necessary.Comment: 12 pages, 7 figures, minor language corrections to match the A&A
accepted versio
Herwig++ 2.0 Release Note
A new release of the Monte Carlo program Herwig++ (version 2.0) is now
available. This is the first version of the program which can be used for
hadron-hadron physics and includes the full simulation of both initial- and
final-state QCD radiation.Comment: Source code and additional information available at
http://hepforge.cedar.ac.uk/herwig
- …