116 research outputs found
The Origin of Galactic Cosmic Rays
Motivated by recent measurements of the major components of the cosmic
radiation around 10 TeV/nucleon and above, we discuss the phenomenology of a
model in which there are two distinct kinds of cosmic ray accelerators in the
galaxy. Comparison of the spectra of hydrogen and helium up to 100 TeV per
nucleon suggests that these two elements do not have the same spectrum of
magnetic rigidity over this entire region and that these two dominant elements
therefore receive contributions from different sources.Comment: To be published in Physical Review D, 13 pages, with 3 figures,
uuencode
Astrophysical Uncertainties in the Cosmic Ray Electron and Positron Spectrum From Annihilating Dark Matter
In recent years, a number of experiments have been conducted with the goal of
studying cosmic rays at GeV to TeV energies. This is a particularly interesting
regime from the perspective of indirect dark matter detection. To draw reliable
conclusions regarding dark matter from cosmic ray measurements, however, it is
important to first understand the propagation of cosmic rays through the
magnetic and radiation fields of the Milky Way. In this paper, we constrain the
characteristics of the cosmic ray propagation model through comparison with
observational inputs, including recent data from the CREAM experiment, and use
these constraints to estimate the corresponding uncertainties in the spectrum
of cosmic ray electrons and positrons from dark matter particles annihilating
in the halo of the Milky Way.Comment: 21 pages, 9 figure
On the fraction of dark matter in charged massive particles (CHAMPs)
From various cosmological, astrophysical and terrestrial requirements, we
derive conservative upper bounds on the present-day fraction of the mass of the
Galactic dark matter (DM) halo in charged massive particles (CHAMPs). If dark
matter particles are neutral but decay lately into CHAMPs, the lack of
detection of heavy hydrogen in sea water and the vertical pressure equilibrium
in the Galactic disc turn out to put the most stringent bounds. Adopting very
conservative assumptions about the recoiling velocity of CHAMPs in the decay
and on the decay energy deposited in baryonic gas, we find that the lifetime
for decaying neutral DM must be > (0.9-3.4)x 10^3 Gyr. Even assuming the
gyroradii of CHAMPs in the Galactic magnetic field are too small for halo
CHAMPs to reach Earth, the present-day fraction of the mass of the Galactic
halo in CHAMPs should be < (0.4-1.4)x 10^{-2}. We show that redistributing the
DM through the coupling between CHAMPs and the ubiquitous magnetic fields
cannot be a solution to the cuspy halo problem in dwarf galaxies.Comment: 21 pages, 2 figures. To appear in JCA
Time-variability in the Interstellar Boundary Conditions of the Heliosphere: Effect of the Solar Journey on the Galactic Cosmic Ray Flux at Earth
During the solar journey through galactic space, variations in the physical
properties of the surrounding interstellar medium (ISM) modify the heliosphere
and modulate the flux of galactic cosmic rays (GCR) at the surface of the
Earth, with consequences for the terrestrial record of cosmogenic
radionuclides. One phenomenon that needs studying is the effect on cosmogenic
isotope production of changing anomalous cosmic ray fluxes at Earth due to
variable interstellar ionizations. The possible range of interstellar ram
pressures and ionization levels in the low density solar environment generate
dramatically different possible heliosphere configurations, with a wide range
of particle fluxes of interstellar neutrals, their secondary products, and GCRs
arriving at Earth. Simple models of the distribution and densities of ISM in
the downwind direction give cloud transition timescales that can be directly
compared with cosmogenic radionuclide geologic records. Both the interstellar
data and cosmogenic radionuclide data are consistent with cloud transitions
during the Holocene, with large and assumption-dependent uncertainties. The
geomagnetic timeline derived from cosmic ray fluxes at Earth may require
adjustment to account for the disappearance of anomalous cosmic rays when the
Sun is immersed in ionized gas.Comment: Submitted to Space Sciences Review
Balloon Measurements of Cosmic Ray Muon Spectra in the Atmosphere along with those of Primary Protons and Helium Nuclei over Mid-Latitude
We report here the measurements of the energy spectra of atmospheric muons
and of the cosmic ray primary proton and helium nuclei in a single experiment.
These were carried out using the MASS superconducting spectrometer in a balloon
flight experiment in 1991. The relevance of these results to the atmospheric
neutrino anomaly is emphasized. In particular, this approach allows
uncertainties caused by the level of solar modulation, the geomagnetic cut-off
of the primaries and possible experimental systematics to be decoupled in the
comparison of calculated fluxes of muons to measured muon fluxes. The muon
observations cover the momentum and depth ranges of 0.3-40 GeV/c and 5-886
g/cmsquared, respectively. The proton and helium primary measurements cover the
rigidity range from 3 to 100 GV, in which both the solar modulation and the
geomagnetic cut-off affect the energy spectra at low energies.Comment: 31 pages, including 17 figures, simplified apparatus figure, to
appear in Phys. Rev.
Further investigation of a relic neutralino as a possible origin of an annual-modulation effect in WIMP direct search
We analyze the annual-modulation effect, measured by the DAMA Collaboration
with the new implementation of a further two-years running, in the context of a
possible interpretation in terms of relic neutralinos. We impose over the set
of supersymmetric configurations, selected by the annual-modulation data, the
constraints derived from WIMP indirect measurements, and discuss the features
of the ensuing relic neutralinos. We critically discuss the sources of the main
theoretical uncertainties in the analysis of event rates for direct and
indirect WIMP searches.Comment: 29 pages, 12 figures, typeset with ReVTeX. In order to reduce size,
the version on the archive has low resolution figures. A full version of the
paper can be found at http://www.to.infn.it/~fornengo/papers
Calculation of the Flux of Atmospheric Neutrinos
Atmospheric neutrino-fluxes are calculated over the wide energy range from 30
MeV to 3,000 GeV for the study of neutrino-physics using the data from
underground neutrino-detectors. The atmospheric muon-flux at high altitude and
at sea level is studied to calibrate the neutrino-fluxes at low energies and
high energies respectively. The agreement of our calculation with observations
is satisfactory. The uncertainty of atmospheric neutrino-fluxes is also
studied.Comment: 51 page
The 22-Year Hale Cycle in cosmic ray flux: evidence for direct heliospheric modulation
The ability to predict times of greater galactic cosmic ray (GCR) fluxes is important for reducing the hazards caused by these particles to satellite communications, aviation, or astronauts. The 11-year solar-cycle variation in cosmic rays is highly correlated with the strength of the heliospheric magnetic field. Differences in GCR flux during alternate solar cycles yield a 22-year cycle, known as the Hale Cycle, which is thought to be due to different particle drift patterns when the northern solar pole has predominantly positive (denoted as qA>0 cycle) or negative (qA0 cycles than for qA0 and more sharply peaked for qA0 solar cycles, when the difference in GCR flux is most apparent. This suggests that particle drifts may not be the sole mechanism responsible for the Hale Cycle in GCR flux at Earth. However, we also demonstrate that these polarity-dependent heliospheric differences are evident during the space-age but are much less clear in earlier data: using geomagnetic reconstructions, we show that for the period of 1905 - 1965, alternate polarities do not give as significant a difference during the declining phase of the solar cycle. Thus we suggest that the 22-year cycle in cosmic-ray flux is at least partly the result of direct modulation by the heliospheric magnetic field and that this effect may be primarily limited to the grand solar maximum of the space-age
- …