3,524 research outputs found

    Non-perturbative effects in the energy-energy correlation

    Get PDF
    The fully resummed next-to-leading-order perturbative calculation of the energy-energy correlation in e+ee^+e^- annihilation is extended to include the leading non-perturbative power-behaved contributions computed using the ``dispersive method'' applied earlier to event shape variables. The correlation between a leading (anti)quark and a gluon produces a non-perturbative 1/Q contribution, while non-perturbative effects in the quark-antiquark correlation give rise to a smaller contribution lnQ2/Q2\ln Q^2/Q^2. In the back-to-back region, the power-suppressed contributions actually decrease much more slowly, as small non-integer powers of 1/Q, as a result of the interplay with perturbative effects. The hypothesis of a universal low-energy form for the strong coupling relates the coefficients of these contributions to those measured for other observables.Comment: 41 pages, LaTeX, 4 figures, uses JHEP.cl

    Signatures of four-particle correlations associated with exciton-carrier interactions in coherent spectroscopy on bulk GaAs

    Get PDF
    Transient four-wave mixing studies of bulk GaAs under conditions of broad bandwidth excitation of primarily interband transitions have enabled four-particle correlations tied to degenerate (exciton-exciton) and nondegenerate (exciton-carrier) interactions to be studied. Real two-dimensional Fourier-transform spectroscopy (2DFTS) spectra reveal a complex response at the heavy-hole exciton emission energy that varies with the absorption energy, ranging from dispersive on the diagonal, through absorptive for low-energy interband transitions to dispersive with the opposite sign for interband transitions high above band gap. Simulations using a multilevel model augmented by many-body effects provide excellent agreement with the 2DFTS experiments and indicate that excitation-induced dephasing (EID) and excitation-induced shift (EIS) affect degenerate and nondegenerate interactions equivalently, with stronger exciton-carrier coupling relative to exciton-exciton coupling by approximately an order of magnitude. These simulations also indicate that EID effects are three times stronger than EIS in contributing to the coherent response of the semiconductor

    Topological properties and fractal analysis of recurrence network constructed from fractional Brownian motions

    Full text link
    Many studies have shown that we can gain additional information on time series by investigating their accompanying complex networks. In this work, we investigate the fundamental topological and fractal properties of recurrence networks constructed from fractional Brownian motions (FBMs). First, our results indicate that the constructed recurrence networks have exponential degree distributions; the relationship between HH and canberepresentedbyacubicpolynomialfunction.Wenextfocusonthemotifrankdistributionofrecurrencenetworks,sothatwecanbetterunderstandnetworksatthelocalstructurelevel.Wefindtheinterestingsuperfamilyphenomenon,i.e.therecurrencenetworkswiththesamemotifrankpatternbeinggroupedintotwosuperfamilies.Last,wenumericallyanalyzethefractalandmultifractalpropertiesofrecurrencenetworks.Wefindthattheaveragefractaldimension can be represented by a cubic polynomial function. We next focus on the motif rank distribution of recurrence networks, so that we can better understand networks at the local structure level. We find the interesting superfamily phenomenon, i.e. the recurrence networks with the same motif rank pattern being grouped into two superfamilies. Last, we numerically analyze the fractal and multifractal properties of recurrence networks. We find that the average fractal dimension of recurrence networks decreases with the Hurst index HH of the associated FBMs, and their dependence approximately satisfies the linear formula 2H \approx 2 - H. Moreover, our numerical results of multifractal analysis show that the multifractality exists in these recurrence networks, and the multifractality of these networks becomes stronger at first and then weaker when the Hurst index of the associated time series becomes larger from 0.4 to 0.95. In particular, the recurrence network with the Hurst index H=0.5H=0.5 possess the strongest multifractality. In addition, the dependence relationships of the average information dimension andtheaveragecorrelationdimension and the average correlation dimension on the Hurst index HH can also be fitted well with linear functions. Our results strongly suggest that the recurrence network inherits the basic characteristic and the fractal nature of the associated FBM series.Comment: 25 pages, 1 table, 15 figures. accepted by Phys. Rev.

    Polynomials, Riemann surfaces, and reconstructing missing-energy events

    Get PDF
    We consider the problem of reconstructing energies, momenta, and masses in collider events with missing energy, along with the complications introduced by combinatorial ambiguities and measurement errors. Typically, one reconstructs more than one value and we show how the wrong values may be correlated with the right ones. The problem has a natural formulation in terms of the theory of Riemann surfaces. We discuss examples including top quark decays in the Standard Model (relevant for top quark mass measurements and tests of spin correlation), cascade decays in models of new physics containing dark matter candidates, decays of third-generation leptoquarks in composite models of electroweak symmetry breaking, and Higgs boson decay into two tau leptons.Comment: 28 pages, 6 figures; version accepted for publication, with discussion of Higgs to tau tau deca

    Simulating Humans: Computer Graphics, Animation, and Control

    Get PDF
    People are all around us. They inhabit our home, workplace, entertainment, and environment. Their presence and actions are noted or ignored, enjoyed or disdained, analyzed or prescribed. The very ubiquitousness of other people in our lives poses a tantalizing challenge to the computational modeler: people are at once the most common object of interest and yet the most structurally complex. Their everyday movements are amazingly uid yet demanding to reproduce, with actions driven not just mechanically by muscles and bones but also cognitively by beliefs and intentions. Our motor systems manage to learn how to make us move without leaving us the burden or pleasure of knowing how we did it. Likewise we learn how to describe the actions and behaviors of others without consciously struggling with the processes of perception, recognition, and language

    Space, Time and Color in Hadron Production Via e+e- -> Z0 and e+e- -> W+W-

    Get PDF
    The time-evolution of jets in hadronic e+e- events at LEP is investigated in both position- and momentum-space, with emphasis on effects due to color flow and particle correlations. We address dynamical aspects of the four simultanously-evolving, cross-talking parton cascades that appear in the reaction e+e- -> gamma/Z0 -> W+W- -> q1 q~2 q3 q~4, and compare with the familiar two-parton cascades in e+e- -> Z0 -> q1 q~2. We use a QCD statistical transport approach, in which the multiparticle final state is treated as an evolving mixture of partons and hadrons, whose proportions are controlled by their local space-time geography via standard perturbative QCD parton shower evolution and a phenomenological model for non-perturbative parton-cluster formation followed by cluster decays into hadrons. Our numerical simulations exhibit a characteristic `inside-outside' evolution simultanously in position and momentum space. We compare three different model treatments of color flow, and find large effects due to cluster formation by the combination of partons from different W parents. In particular, we find in our preferred model a shift of several hundred MeV in the apparent mass of the W, which is considerably larger than in previous model calculations. This suggests that the determination of the W mass at LEP2 may turn out to be a sensitive probe of spatial correlations and hadronization dynamics.Comment: 52 pages, latex, 18 figures as uu-encoded postscript fil
    corecore