3,524 research outputs found
Non-perturbative effects in the energy-energy correlation
The fully resummed next-to-leading-order perturbative calculation of the
energy-energy correlation in annihilation is extended to include the
leading non-perturbative power-behaved contributions computed using the
``dispersive method'' applied earlier to event shape variables. The correlation
between a leading (anti)quark and a gluon produces a non-perturbative 1/Q
contribution, while non-perturbative effects in the quark-antiquark correlation
give rise to a smaller contribution . In the back-to-back region,
the power-suppressed contributions actually decrease much more slowly, as small
non-integer powers of 1/Q, as a result of the interplay with perturbative
effects. The hypothesis of a universal low-energy form for the strong coupling
relates the coefficients of these contributions to those measured for other
observables.Comment: 41 pages, LaTeX, 4 figures, uses JHEP.cl
Signatures of four-particle correlations associated with exciton-carrier interactions in coherent spectroscopy on bulk GaAs
Transient four-wave mixing studies of bulk GaAs under conditions of broad
bandwidth excitation of primarily interband transitions have enabled
four-particle correlations tied to degenerate (exciton-exciton) and
nondegenerate (exciton-carrier) interactions to be studied. Real
two-dimensional Fourier-transform spectroscopy (2DFTS) spectra reveal a complex
response at the heavy-hole exciton emission energy that varies with the
absorption energy, ranging from dispersive on the diagonal, through absorptive
for low-energy interband transitions to dispersive with the opposite sign for
interband transitions high above band gap. Simulations using a multilevel model
augmented by many-body effects provide excellent agreement with the 2DFTS
experiments and indicate that excitation-induced dephasing (EID) and
excitation-induced shift (EIS) affect degenerate and nondegenerate interactions
equivalently, with stronger exciton-carrier coupling relative to
exciton-exciton coupling by approximately an order of magnitude. These
simulations also indicate that EID effects are three times stronger than EIS in
contributing to the coherent response of the semiconductor
Topological properties and fractal analysis of recurrence network constructed from fractional Brownian motions
Many studies have shown that we can gain additional information on time
series by investigating their accompanying complex networks. In this work, we
investigate the fundamental topological and fractal properties of recurrence
networks constructed from fractional Brownian motions (FBMs). First, our
results indicate that the constructed recurrence networks have exponential
degree distributions; the relationship between and of recurrence networks decreases with the Hurst
index of the associated FBMs, and their dependence approximately satisfies
the linear formula . Moreover, our numerical results of
multifractal analysis show that the multifractality exists in these recurrence
networks, and the multifractality of these networks becomes stronger at first
and then weaker when the Hurst index of the associated time series becomes
larger from 0.4 to 0.95. In particular, the recurrence network with the Hurst
index possess the strongest multifractality. In addition, the
dependence relationships of the average information dimension on the Hurst index can also be
fitted well with linear functions. Our results strongly suggest that the
recurrence network inherits the basic characteristic and the fractal nature of
the associated FBM series.Comment: 25 pages, 1 table, 15 figures. accepted by Phys. Rev.
Polynomials, Riemann surfaces, and reconstructing missing-energy events
We consider the problem of reconstructing energies, momenta, and masses in
collider events with missing energy, along with the complications introduced by
combinatorial ambiguities and measurement errors. Typically, one reconstructs
more than one value and we show how the wrong values may be correlated with the
right ones. The problem has a natural formulation in terms of the theory of
Riemann surfaces. We discuss examples including top quark decays in the
Standard Model (relevant for top quark mass measurements and tests of spin
correlation), cascade decays in models of new physics containing dark matter
candidates, decays of third-generation leptoquarks in composite models of
electroweak symmetry breaking, and Higgs boson decay into two tau leptons.Comment: 28 pages, 6 figures; version accepted for publication, with
discussion of Higgs to tau tau deca
Simulating Humans: Computer Graphics, Animation, and Control
People are all around us. They inhabit our home, workplace, entertainment, and environment. Their presence and actions are noted or ignored, enjoyed or disdained, analyzed or prescribed. The very ubiquitousness of other people in our lives poses a tantalizing challenge to the computational modeler: people are at once the most common object of interest and yet the most structurally complex. Their everyday movements are amazingly uid yet demanding to reproduce, with actions driven not just mechanically by muscles and bones but also cognitively by beliefs and intentions. Our motor systems manage to learn how to make us move without leaving us the burden or pleasure of knowing how we did it. Likewise we learn how to describe the actions and behaviors of others without consciously struggling with the processes of perception, recognition, and language
Space, Time and Color in Hadron Production Via e+e- -> Z0 and e+e- -> W+W-
The time-evolution of jets in hadronic e+e- events at LEP is investigated in
both position- and momentum-space, with emphasis on effects due to color flow
and particle correlations. We address dynamical aspects of the four
simultanously-evolving, cross-talking parton cascades that appear in the
reaction e+e- -> gamma/Z0 -> W+W- -> q1 q~2 q3 q~4, and compare with the
familiar two-parton cascades in e+e- -> Z0 -> q1 q~2. We use a QCD statistical
transport approach, in which the multiparticle final state is treated as an
evolving mixture of partons and hadrons, whose proportions are controlled by
their local space-time geography via standard perturbative QCD parton shower
evolution and a phenomenological model for non-perturbative parton-cluster
formation followed by cluster decays into hadrons. Our numerical simulations
exhibit a characteristic `inside-outside' evolution simultanously in position
and momentum space. We compare three different model treatments of color flow,
and find large effects due to cluster formation by the combination of partons
from different W parents. In particular, we find in our preferred model a shift
of several hundred MeV in the apparent mass of the W, which is considerably
larger than in previous model calculations. This suggests that the
determination of the W mass at LEP2 may turn out to be a sensitive probe of
spatial correlations and hadronization dynamics.Comment: 52 pages, latex, 18 figures as uu-encoded postscript fil
- …