319 research outputs found
Oxygen Atom Transfer Reactions of Chromium Porphyrins: An Electronic Rationale for Oxo Transfer versus μ-Oxo Product Formation
Treatment of (meso-tetra-p-tolylporphyrinato)chromium(IV) oxide, {TTP)Cr=O, with (octaethylporphyrinato)chromium( III) chloride, (OEP)Cr-Cl, in benzene results in the reversible exchange of axial ligands to form (TTP)Cr-Cl and (OEP)Cr=O. The net result is a formal one-electron redox process. This occurs with a second-order rate constant of 0.14 :1:: 0.01 M-1 s-1 to form an equilibrium mixture with K = 2.7 :1:: 0.1 at 30 °C (ill/* = 15.4 :1:: 0.7 kcaljmol, M* = -12 :1:: 2 cal/ (mol·K), ill/0 = -2.0 :1:: 0.4 kcaljmol, and M 0 = -4.6 :1:: 1.2 cal/ (mol·K)). Use of pivalate in place of chloride on the Cr(III) complex causes no significant change in the rate of this one-electron redox process. The sterically protected Baldwin\u27s C2-capped {porphyrinato)chromium(III) complex, (CAP)Cr-Cl, also undergoes oxygen atom transfer with (OEP)Cr=O at a similar rate. In addition, excess chloride inhibits the rate of oxygen transfer with chlorochromium(III) complexes. These results support an inner-sphere mechanism involving a ~-oxo intermediate which is formed after an initial ligand (chloride or pivalate) dissociation from the chromium(III) reductant
The effects of rule changes in football-code team sports: a systematic review
Rule changes within football-code team sports aim to improve performance, enhance player welfare, increase competitiveness, and provide player development opportunities. This manuscript aimed to review research investigating the effects of rule changes in football-code team sports. A systematic search of electronic databases (PubMed, ScienceDirect, CINAHL, MEDLINE, and SPORTDiscus) was performed to August 2023; keywords related to rule changes, football-code team sports, and activity type. Studies were excluded if they failed to investigate a football-code team sport, did not quantify the change of rule, or were review articles. Forty-six studies met the eligibility criteria. Four different football codes were reported: Australian rules football (n = 4), rugby league (n = 6), rugby union (n = 16), soccer (n = 20). The most common category was physical performance and match-play characteristics (n = 22). Evidence appears at a high risk of bias partly due to the quasi-experimental nature of included studies, which are inherently non-randomised, but also due to the lack of control for confounding factors within most studies included. Rule changes can result in unintended consequences to performance (e.g., longer breaks in play) and effect player behaviour (i.e., reduce tackler height in rugby) but might not achieve desired outcome (i.e., unchanged concussion incidence). Coaches and governing bodies should regularly and systematically investigate the effects of rule changes to understand their influence on performance and injury risk. It is imperative that future studies analysing rule changes within football codes account for confounding factors by implementing suitable study designs and statistical analysis techniques
Current imbalance in parallel battery strings measured using a hall‐effect sensor array
Herein, individual cell currents in parallel connected battery strings are measured using micro‐Hall‐effect sensors. Cells are routinely connected in electrical series and parallel to meet the power and energy requirements of automotive and consumer electronics applications. Cells connected in series have been extensively studied; however, cells in parallel are often assumed to be a “black box” in battery management systems. Poor pack design can result in positive feedback between current and temperature differentials along the parallel string, driving greater levels of heterogeneous behavior and uneven degradation. Herein, a noninvasive multisensor array board using Hall‐effect sensors is used to individually record the current passing through eight parallel connected cells in two different electrical configurations, showing highly heterogeneous current distribution. Characteristic “waves” of current and temperature are found to propagate along the parallel battery string and cell rebalancing is found to occur over hundreds of seconds with individual cell currents of up to 1 C rate
A global perspective on collision and non-collision match characteristics in male rugby union: Comparisons by age and playing standard
This study quantified and compared the collision and non-collision match characteristics across age categories (i.e. U12, U14, U16, U18, Senior) for both amateur and elite playing standards from Tier 1 rugby union nations (i.e. England, South Africa, New Zealand). Two-hundred and one male matches (5911 min ball-in-play) were coded using computerised notational analysis, including 193,708 match characteristics (e.g. 83,688 collisions, 33,052 tackles, 13,299 rucks, 1006 mauls, 2681 scrums, 2923 lineouts, 44,879 passes, 5568 kicks). Generalised linear mixed models with post-hoc comparisons and cluster analysis compared the match characteristics by age category and playing standard. Overall significant differences (p < 0.001) between age category and playing standard were found for the frequency of match characteristics, and tackle and ruck activity. The frequency of characteristics increased with age category and playing standard except for scrums and tries that were the lowest at the senior level. For the tackle, the percentage of successful tackles, frequency of active shoulder, sequential and simultaneous tackles increased with age and playing standard. For ruck activity, the number of attackers and defenders were lower in U18 and senior than younger age categories. Cluster analysis demonstrated clear differences in all and collision match characteristics and activity by age category and playing standard. These findings provide the most comprehensive quantification and comparison of collision and non-collision activity in rugby union demonstrating increased frequency and type of collision activity with increasing age and playing standard. These findings have implications for policy to ensure the safe development of rugby union players throughout the world.</p
Impacts of caring for a child with the CDKL5 disorder on parental wellbeing and family quality of life
Background: Although research in this area remains sparse, raising a child with some genetic disorders has been shown to adversely impact maternal health and family quality of life. The aim of this study was to investigate such impacts in families with a child with the CDKL5 disorder, a newly recognised genetic disorder causing severe neurodevelopmental impairments and refractory epilepsy. Methods: Data were sourced from the International CDKL5 Disorder Database to which 192 families with a child with a pathogenic CDKL5 mutation had provided data by January 2016. The Short Form 12 Health Survey Version 2, yielding a Physical Component Summary and a Mental Component Summary score, was used to measure primary caregiver's wellbeing. The Beach Center Family Quality of Life Scale was used to measure family quality of life. Linear regression analyses were used to investigate relationships between child and family factors and the various subscale scores. Results: The median (range) age of the primary caregivers was 37.0 (24.6-63.7) years and of the children was 5.2 (0.2-34.1) years. The mean (SD) physical and mental component scores were 53.7 (8.6) and 41.9 (11.6), respectively. In mothers aged 25-54 years the mean mental but not the physical component score was lower than population norms. After covariate adjustment, caregivers with a tube-fed child had lower mean physical but higher mean mental component scores than those whose child fed orally (coefficient = -4.80 and 6.79; p = 0.009 and 0.012, respectively). Child sleep disturbances and financial hardship were negatively associated with the mental component score. The mean (SD) Beach Center Family Quality of Life score was 4.06 (0.66) and those who had used respite services had lower scores than those who had not across the subscales. Conclusions: Emotional wellbeing was considerably impaired in this caregiver population, and was particularly associated with increased severity of child sleep problems and family financial difficulties. Family quality of life was generally rated lowest in those using respite care extensively, suggesting that these families may be more burdened by daily caregiving
Contact load practices and perceptions in elite English rugby league: an evaluation to inform contact load guidelines
Background: Athlete exposure to contact could be a risk factor for injury. Governing bodies should provide guidelines preventing overexposure to contact.
Objectives: Describe the current contact load practices and perceptions of contact load requirements within men’s and women’s rugby league to allow the Rugby Football League (RFL) to develop contact load guidelines.
Methods: Participants (n=450 players, n=46 coaching staff, n=32 performance staff, n=23 medical staff) completed an online survey of 27 items, assessing the current contact load practices and perceptions within four categories: “current contact load practices” (n=12 items), “perceptions of required contact load” (n = 6 items), “monitoring of contact load” (n=3 items), and “the relationship between contact load and recovery” (n=6 items).
Results: During men’s Super League pre-season, full contact and controlled contact training was typically undertaken for 15-30 minutes per week, and wrestling training for 15-45 minutes per week. During the in-season, these three training types were all typically undertaken for 15-30 mins per week. In women’s Super League, all training modalities were undertaken for up to 30 minutes per week in the pre- and in-season periods. Both men’s and women’s Super League players and staff perceived 15-30 minutes of full contact training per week was enough to prepare players for the physical demands of rugby league, but a higher duration may be required to prepare for the technical contact demands.
Conclusion: Men’s and women’s Super League clubs currently undertake more contact training during pre-season than in-season, which was planned by coaches and is deemed adequate to prepare players for the demands of rugby league. This study provides data to develop contact load guidelines to improve player welfare whilst not impacting performance
Oligogenic heterozygosity in individuals with high-functioning autism spectrum disorders
Autism spectrum disorders (ASDs) are a heterogeneous group of neuro-developmental disorders. While significant progress has been made in the identification of genes and copy number variants associated with syndromic autism, little is known to date about the etiology of idiopathic non-syndromic autism. Sanger sequencing of 21 known autism susceptibility genes in 339 individuals with high-functioning, idiopathic ASD revealed de novo mutations in at least one of these genes in 6 of 339 probands (1.8%). Additionally, multiple events of oligogenic heterozygosity were seen, affecting 23 of 339 probands (6.8%). Screening of a control population for novel coding variants in CACNA1C, CDKL5, HOXA1, SHANK3, TSC1, TSC2 and UBE3A by the same sequencing technology revealed that controls were carriers of oligogenic heterozygous events at significantly (P < 0.01) lower rate, suggesting oligogenic heterozygosity as a new potential mechanism in the pathogenesis of ASDs
Collision activity during training increases total energy expenditure measured via doubly labelled water
Purpose: Collision sports are characterised by frequent high intensity collisions that induce substantial muscle damage, potentially increasing the energetic cost of recovery. Therefore, this study investigated the energetic cost of collision-based activity for the first time across any sport. Methods: Using a randomised crossover design, six professional young male rugby league players completed two different five-day pre-season training microcycles. Players completed either a collision (COLL; 20 competitive one-on-one collisions) or non-collision (nCOLL; matched for kinematic demands, excluding collisions) training session on the first day of each microcycle, exactly seven days apart. All remaining training sessions were matched and did not involve any collision-based activity. Total energy expenditure was measured using doubly labelled water, the literature gold standard. Results: Collisions resulted in a very likely higher (4.96 ± 0.97 MJ; ES = 0.30 ±0.07; p=0.0021) total energy expenditure across the five-day COLL training microcycle (95.07 ± 16.66 MJ) compared with the nCOLL training microcycle (90.34 ± 16.97 MJ). The COLL training session also resulted in a very likely higher (200 ± 102 AU; ES = 1.43 ±0.74; p=0.007) session rating of perceived exertion and a very likely greater (-14.6 ± 3.3%; ES = -1.60 ±0.51; p=0.002) decrease in wellbeing 24h later. Conclusions: A single collision training session considerably increased total energy expenditure. This may explain the large energy expenditures of collision sport athletes, which appear to exceed kinematic training and match demands. These findings suggest fuelling professional collision-sport athletes appropriately for the "muscle damage caused” alongside the kinematic “work required”. Key words: Nutrition, Recovery, Contact, Rugb
Operando ultrasonic monitoring of lithium-ion battery temperature and behaviour at different cycling rates and under drive cycle conditions
Effective diagnostic techniques for Li-ion batteries are vital to ensure that they operate in the required voltage and temperature window to prevent premature degradation and failure. Ultrasonic analysis has been gaining significant attention as a low cost, fast, non-destructive, operando technique for assessing the state-of-charge and state-of-health of Li-ion batteries. Thus far, the majority of studies have focused on a single C-rate at relatively low charge and discharge currents, and as such the relationship between the changing acoustic signal and C-rate is not well understood. In this work, the effect of cell temperature on the acoustic signal is studied and shown to have a strong correlation with the signal's time-of-flight. This correlation allows for the cell temperature to be inferred using ultrasound and to compensate for these effects to accurately predict the state-of-charge regardless of the C-rate at which the cell is being cycled. Ultrasonic state-of-charge monitoring of a cell during a drive cycle illustrates the suitability of this technique to be applied in real-world situations, an important step in the implementation of this technique in battery management systems with the potential to improve pack safety, performance, and efficiency
- …