470 research outputs found

    Stem-Cell-like Qualities of Immune Memory; CD4+ T Cells Join the Party

    Get PDF
    Similar to hematopoietic stem cells, memory lymphocytes self-renew, while their clonally expanded effector progeny differentiate to fight infection and tumors. Recently, Muranski et al. (2011) report in Immunity that a subset of Th17 effector cells function as memory cells and retain stem cell properties

    Duality in the Th17-Treg developmental decision

    Get PDF
    Each of the effector CD4 T-cell lineages - Th1, Th2, and the more recently identified Th17 - arises from pluripotent naïve precursors whose developmental fate is largely controlled by cytokines that act in concert with antigenic signals. Remarkably, development of the Th17 lineage has been linked to that of regulatory T cells, which obviate or downregulate Th17 responses to preserve immune homeostasis, through a shared requirement for the cytokine transforming growth factor-beta. Several new studies offer insights into the mechanism whereby the precursors of these subsets are directed into distinct lineages

    Restricted Clonal Expression of IL-2 By Naive T Cells Reflects Differential Dynamic Interactions with Dendritic Cells

    Get PDF
    Limited frequencies of T cells express IL-2 in primary antigenic responses, despite activation marker expression and proliferation by most clonal members. To define the basis for restricted IL-2 expression, a videomicroscopic system and IL-2 reporter transgenic model were used to characterize dendritic cell (DC)–T cell interactions. T cells destined to produce IL-2 required prolonged interactions with DCs, whereas most T cells established only transient interactions with DCs and were activated, but did not express IL-2. Extended conjugation of T cells with DCs was not always sufficient to initiate IL-2 expression. Thus, there is intrinsic variability in clonal T cell populations that restricts IL-2 commitment, and prolonged engagement with mature DCs is necessary, but not sufficient, for IL-2 gene transcription

    Efficient adenovirus-mediated gene transfer into primary T cells and thymocytes in a new coxsackie/adenovirus receptor transgenic model

    Get PDF
    BACKGROUND: Gene transfer studies in primary T cells have suffered from the limitations of conventional viral transduction or transfection techniques. Replication-defective adenoviral vectors are an attractive alternative for gene delivery. However, naive lymphocytes are not readily susceptible to infection with adenoviruses due to insufficient expression of the coxsackie/adenovirus receptor. RESULTS: To render T cells susceptible to adenoviral gene transfer, we have developed three new murine transgenic lines in which expression of the human coxsackie/adenovirus receptor (hCAR) with a truncated cytoplasmic domain (hCARΔcyt) is limited to thymocytes and lymphocytes under direction of a human CD2 mini-gene. hCARΔcyt.CD2 transgenic mice were crossed with DO11.10 T cell receptor transgenic mice (DO11.hCARΔcyt) to allow developmental studies in a defined, clonal T cell population. Expression of hCARΔcyt enabled adenoviral transduction of resting primary CD4(+) T cells, differentiated effector T cells and thymocytes from DO11.hCARΔcyt with high efficiency. Expression of hCARΔcyt transgene did not perturb T cell development in these mice and adenoviral transduction of DO11.hCARΔcyt T cells did not alter their activation status, functional responses or differentiative potential. Adoptive transfer of the transduced T cells into normal recipients did not modify their physiologic localization. CONCLUSION: The DO11.hCARΔcyt transgenic model thus allows efficient gene transfer in primary T cell populations and will be valuable for novel studies of T cell activation and differentiation

    Preferential Accumulation of Antigen-specific Effector CD4 T Cells at an Antigen Injection Site Involves CD62E-dependent Migration but Not Local Proliferation

    Get PDF
    The migration of antigen-specific T cells to nonlymphoid tissues is thought to be important for the elimination of foreign antigens from the body. However, recent results showing the migration of activated T cells into many nonlymphoid tissues raised the possibility that antigen-specific T cells do not migrate preferentially to nonlymphoid tissues containing antigen. We addressed this question by tracking antigen-specific CD4 T cells in the whole body after a localized subcutaneous antigen injection. Antigen-specific CD4 T cells proliferated in the skin-draining lymph nodes and the cells that underwent the most cell divisions acquired the ability to bind to CD62P. As time passed, CD62P-binding antigen-specific CD4 T cells with interferon γ production potential accumulated preferentially at the site of antigen injection but only in recipients that expressed CD62E. Surprisingly, these T cells did not proliferate in the injection site despite showing evidence of more cell divisions than the T cells in the draining lymph nodes. The results suggest that the most divided effector CD4 T cells from the lymph nodes enter the site of antigen deposition via recognition of CD62E on blood vessels and are retained there in a nonproliferative state via recognition of peptide–major histocompatibility complex II molecules

    T Helper 1 and T Helper 2 Cells Are Pathogenic in an Antigen-specific Model of Colitis

    Get PDF
    Dysregulated T cell responses to enteric bacteria have been implicated as a common mechanism underlying pathogenesis in rodent models of colitis. However, the bacterial species and T cell specificities that induce disease have been poorly defined. We have developed a model system in which target antigen, bacterial host, and corresponding T cell specificity are defined. OVA-specific T cells from DO11.RAG-2−/− TCR transgenic mice were transferred into RAG-2−/− recipients whose intestinal tracts were colonized with OVA-expressing or control Escherichia coli. Transfer of antigen-naive DO11.RAG-2−/− T cells into recipients colonized with OVA-E. coli resulted in enhanced intestinal recruitment and cell cycling of OVA-specific T cells; however, there was no development of disease. In contrast, transfer of polarized T helper (Th) 1 and Th2 populations resulted in severe wasting and colitis in recipients colonized with OVA-expressing but not control E. coli. The histopathologic features of disease induced by Th1 and Th2 transfers were distinct, but disease severity was comparable. Induction of disease by both Th1 and Th2 transfers was dependent on bacterially associated OVA. These results establish that a single bacterially associated antigen can drive the progression of colitis mediated by both Th1 and Th2 cells and provide a new model for understanding the immunoregulatory interactions between T cells responsive to gut floral antigens

    Notch Simultaneously Orchestrates Multiple Helper T Cell Programs Independently of Cytokine Signals

    Get PDF
    SummaryTwo models are proposed to explain Notch function during helper T (Th) cell differentiation. One argues that Notch instructs one Th cell fate over the other, whereas the other posits that Notch function is dictated by cytokines. Here we provide a detailed mechanistic study investigating the role of Notch in orchestrating Th cell differentiation. Notch neither instructed Th cell differentiation nor did cytokines direct Notch activity, but instead, Notch simultaneously regulated the Th1, Th2, and Th17 cell genetic programs independently of cytokine signals. In addition to regulating these programs in both polarized and nonpolarized Th cells, we identified Ifng as a direct Notch target. Notch bound the Ifng CNS-22 enhancer, where it synergized with Tbet at the promoter. Thus, Notch acts as an unbiased amplifier of Th cell differentiation. Our data provide a paradigm for Notch in hematopoiesis, with Notch simultaneously orchestrating multiple lineage programs, rather than restricting alternate outcomes

    Chronic viral infection promotes sustained Th1-derived immunoregulatory IL-10 via BLIMP-1

    Get PDF
    During the course of many chronic viral infections, the antiviral T cell response becomes attenuated through a process that is regulated in part by the host. While elevated expression of the immunosuppressive cytokine IL-10 is involved in the suppression of viral-specific T cell responses, the relevant cellular sources of IL-10, as well as the pathways responsible for IL-10 induction, remain unclear. In this study, we traced IL-10 production over the course of chronic lymphocytic choriomeningitis virus (LCMV) infection in an IL-10 reporter mouse line. Using this model, we demonstrated that virus-specific T cells with reduced inflammatory function, particularly Th1 cells, display elevated and sustained IL-10 expression during chronic LCMV infection. Furthermore, ablation of IL-10 from the T cell compartment partially restored T cell function and reduced viral loads in LCMV-infected animals. We found that viral persistence is needed for sustained IL-10 production by Th1 cells and that the transcription factor BLIMP-1 is required for IL-10 expression by Th1 cells. Restimulation of Th1 cells from LCMV-infected mice promoted BLIMP-1 and subsequent IL-10 expression, suggesting that constant antigen exposure likely induces the BLIMP-1/IL-10 pathway during chronic viral infection. Together, these data indicate that effector T cells self-limit their responsiveness during persistent viral infection via an IL-10-dependent negative feedback loop.This work was supported by an Australian NHMRC Overseas Biomedical Postdoctoral Fellowship (to I.A. Parish); a Yale School of Medicine Brown-Coxe Postdoctoral Fellowship (to I.A. Parish); the Alexander von Humboldt Foundation (SKA2010, to P.A. Lang); a CIHR grant (to P.S. Ohashi); and by the Howard Hughes Medical Institute and NIH grant RO1AI074699 (to S.M. Kaech). P.S. Ohashi holds a Canada Research Chair in Autoimmunity and Tumor immunity

    IL-22–producing neutrophils contribute to antimicrobial defense and restitution of colonic epithelial integrity during colitis

    Get PDF
    IL-22 plays an important role in mucosal epithelial cell homeostasis. Using a dextran sodium sulfate-induced mouse model of acute colitis, we observed an IL-23–dependent up-regulation of IL-22 in the middle and distal colon at the onset of epithelial cell damage. This heightened IL-22 correlated with an influx of innate immune cells, suggesting an important role in colonic epithelial protection. Freshly isolated colon-infiltrating neutrophils produced IL-22 contingent upon IL-23 signaling, and IL-22 production was augmented by TNF-α. Importantly, the depletion of neutrophils resulted in diminished IL-22 levels in the colon, and the transfer of IL-22–competent neutrophils to Il22a-deficient mice protected the colonic epithelium from dextran sodium sulfate-induced damage. In addition, IL-22–producing neutrophils targeted colonic epithelial cells to up-regulate the antimicrobial peptides, RegIIIβ and S100A8. This study establishes a role for neutrophils in providing IL-22–dependent mucosal epithelial support that contributes to the resolution of colitis

    Modular Utilization of Distal cis-Regulatory Elements Controls Ifng Gene Expression in T Cells Activated by Distinct Stimuli

    Get PDF
    Distal cis-regulatory elements play essential roles in the T lineage-specific expression of cytokine genes. We have mapped interactions of three transacting factors – NF-κB, STAT4 and T-bet – with cis elements in the Ifng locus. We find that RelA is critical for optimal Ifng expression and is differentially recruited to multiple elements contingent upon T cell receptor (TCR) or interleukin-12 (IL-12) plus IL-18 signaling. RelA recruitment to at least four elements is dependent on T-bet-dependent remodeling of the Ifng locus and co-recruitment of STAT4. STAT4 and NF-κB therefore cooperate at multiple cis elements to enable NF-κB–dependent enhancement of Ifng expression. RelA recruitment to distal elements was similar in Th1 and Tc1 effector cells, although T-bet was dispensable in CD8 effectors. These results support a model of Ifng regulation in which distal cis-regulatory elements differentially recruit key transcription factors in a modular fashion to initiate gene transcription induced by distinct activation signals
    corecore