177 research outputs found

    Energetics of the Kuroshio south of Japan

    Get PDF
    Historical GEK data are used to estimate the flow of energy from the mean current to the fluctuations for the surface of the Kuroshio in a region south of Japan. The horizontal transfer components of kinetic energy and temperature variance are calculated and are found to be similar to estimates for the Florida Current...

    Shelf harpacticoid copepods do not escape into the seabed during winter storms

    Get PDF
    Winter storms on temperate shelves frequently rework bottom sediments. When the sediment is put in motion, sediment-dwelling harpacticoid copepods risk being suspended. We tested for evidence that adult harpacticoids move below the layer of reworked sediment to avoid suspension. To do so, we determined the rate at which a moderate storm at a site at 18 m depth in the northern Gulf of Mexico (29° 40.63′N, 84° 22.80′W) exposed subsurface sediment during bed-form development and then subjected intact cores from that site to a similar rate of exposure in a laboratory flume. We found no significant difference in vertical position of the population median for adult males of most species and adult females of all species tested between the eroded and control cores. Even the adult males that moved down did not move far enough and were eroded. We conclude that adult harpacticoids do not shelter from winter storms in the seabed. As they are capable of such behavior, being suspended must be more advantageous than living temporarily at depth in the sediment

    Characteristics of testicular tumors in prepubertal children (age 5–12 years)

    Get PDF
    Introduction Testicular tumors in children have two peaks with different types of tumors; in the first 4 years of life a third to half are benign with increased risk of malignancy during puberty. The pathology of testicular tumors between these peaks, at the age of 5–12 years, is not known. We hypothesized that because of the low level of testosterone at this time, the incidence of malignant tumors is very low. Objective To compare malignancy risk of primary testicular tumors in children in the prepubertal period (5–12 years) compared with younger (0–4 years) and pubertal (13–18 years) children. Study design We retrospectively (2002–2016) identified patients <18 years with surgery for primary testicular tumor. Patients with testicular tumor risk were excluded. Ultrasound studies were reviewed for contralateral testis volume, tumor morphology, and tumor maximal diameter, for three age groups: 0–4, 5–12, and 13–18 years. The Freeman-Halton extension of the Fisher exact probability test was adopted for categorical outcomes, and one-way ANOVA for continuous outcomes. Results Fifty-two patients (mean age 11.0 years, range 6 days–18 years) were identified. Malignant tumor prevalence significantly differed ( p 4 mL (pubertal surge) significantly ( p 4 mL. Discussion We found that preadolescent children between the ages of 5 and 12 years have distinctive characteristics compared with the other age groups. Most importantly, no malignant testicular tumors were found in this age group. About a third of the children presented with an incidental testicular mass. The testicular tumors were significantly smaller (9.3 ± 6.7 mm) compared with those in children aged 13–18 years (29.8 ± 4.4 mm). There were limitations because of the retrospective nature of the study. Conclusion We found no malignant testicular tumors in children aged 5–12 years with no risk factors and prior to pubertal surge. Our study suggests use of more conservative treatment in this group of patients

    Psychological Resilience and Cognitive Function Among Older Military Veterans.

    Get PDF
    The purpose of this study was to explore the association between psychological resilience and cognitive function in military veterans. We obtained public-use data from the Health and Retirement Study (HRS) for this cross-sectional study of military veterans aged 52 to 101 years (n = 150). We estimated a multivariable linear regression model in which cognitive function served as the dependent variable and psychological resilience served as the independent variable. After controlling for demographics, health conditions, and health behaviors, veterans who had higher psychological resilience scores had better cognitive function (b = 0.22, p = 0.03). Our findings suggest that psychological resilience may be associated with cognitive function among veterans. These findings highlight the importance of assessing psychological resilience in gerontological social work practice

    Increasing vegetable intakes: rationale and systematic review of published interventions

    Get PDF
    Purpose While the health benefits of a high fruit and vegetable consumption are well known and considerable work has attempted to improve intakes, increasing evidence also recognises a distinction between fruit and vegetables, both in their impacts on health and in consumption patterns. Increasing work suggests health benefits from a high consumption specifically of vegetables, yet intakes remain low, and barriers to increasing intakes are prevalent making intervention difficult. A systematic review was undertaken to identify from the published literature all studies reporting an intervention to increase intakes of vegetables as a distinct food group. Methods Databases—PubMed, PsychInfo and Medline—were searched over all years of records until April 2015 using pre-specified terms. Results Our searches identified 77 studies, detailing 140 interventions, of which 133 (81 %) interventions were conducted in children. Interventions aimed to use or change hedonic factors, such as taste, liking and familiarity (n = 72), use or change environmental factors (n = 39), use or change cognitive factors (n = 19), or a combination of strategies (n = 10). Increased vegetable acceptance, selection and/or consumption were reported to some degree in 116 (83 %) interventions, but the majority of effects seem small and inconsistent. Conclusions Greater percent success is currently found from environmental, educational and multi-component interventions, but publication bias is likely, and long-term effects and cost-effectiveness are rarely considered. A focus on long-term benefits and sustained behaviour change is required. Certain population groups are also noticeably absent from the current list of tried interventions

    Low exposure long-baseline neutrino oscillation sensitivity of the DUNE experiment

    Full text link
    The Deep Underground Neutrino Experiment (DUNE) will produce world-leading neutrino oscillation measurements over the lifetime of the experiment. In this work, we explore DUNE's sensitivity to observe charge-parity violation (CPV) in the neutrino sector, and to resolve the mass ordering, for exposures of up to 100 kiloton-megawatt-years (kt-MW-yr). The analysis includes detailed uncertainties on the flux prediction, the neutrino interaction model, and detector effects. We demonstrate that DUNE will be able to unambiguously resolve the neutrino mass ordering at a 3σ\sigma (5σ\sigma) level, with a 66 (100) kt-MW-yr far detector exposure, and has the ability to make strong statements at significantly shorter exposures depending on the true value of other oscillation parameters. We also show that DUNE has the potential to make a robust measurement of CPV at a 3σ\sigma level with a 100 kt-MW-yr exposure for the maximally CP-violating values \delta_{\rm CP}} = \pm\pi/2. Additionally, the dependence of DUNE's sensitivity on the exposure taken in neutrino-enhanced and antineutrino-enhanced running is discussed. An equal fraction of exposure taken in each beam mode is found to be close to optimal when considered over the entire space of interest

    Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector

    Full text link
    Measurements of electrons from νe\nu_e interactions are crucial for the Deep Underground Neutrino Experiment (DUNE) neutrino oscillation program, as well as searches for physics beyond the standard model, supernova neutrino detection, and solar neutrino measurements. This article describes the selection and reconstruction of low-energy (Michel) electrons in the ProtoDUNE-SP detector. ProtoDUNE-SP is one of the prototypes for the DUNE far detector, built and operated at CERN as a charged particle test beam experiment. A sample of low-energy electrons produced by the decay of cosmic muons is selected with a purity of 95%. This sample is used to calibrate the low-energy electron energy scale with two techniques. An electron energy calibration based on a cosmic ray muon sample uses calibration constants derived from measured and simulated cosmic ray muon events. Another calibration technique makes use of the theoretically well-understood Michel electron energy spectrum to convert reconstructed charge to electron energy. In addition, the effects of detector response to low-energy electron energy scale and its resolution including readout electronics threshold effects are quantified. Finally, the relation between the theoretical and reconstructed low-energy electron energy spectrum is derived and the energy resolution is characterized. The low-energy electron selection presented here accounts for about 75% of the total electron deposited energy. After the addition of lost energy using a Monte Carlo simulation, the energy resolution improves from about 40% to 25% at 50~MeV. These results are used to validate the expected capabilities of the DUNE far detector to reconstruct low-energy electrons.Comment: 19 pages, 10 figure

    Long-baseline neutrino oscillation physics potential of the DUNE experiment

    Get PDF
    The sensitivity of the Deep Underground Neutrino Experiment (DUNE) to neutrino oscillation is determined, based on a full simulation, reconstruction, and event selection of the far detector and a full simulation and parameterized analysis of the near detector. Detailed uncertainties due to the flux prediction, neutrino interaction model, and detector effects are included. DUNE will resolve the neutrino mass ordering to a precision of 5σ, for all ΑCP values, after 2 years of running with the nominal detector design and beam configuration. It has the potential to observe charge-parity violation in the neutrino sector to a precision of 3σ (5σ) after an exposure of 5 (10) years, for 50% of all ΑCP values. It will also make precise measurements of other parameters governing long-baseline neutrino oscillation, and after an exposure of 15 years will achieve a similar sensitivity to sin22θ13 to current reactor experiments

    Long-baseline neutrino oscillation physics potential of the DUNE experiment

    Get PDF
    The sensitivity of the Deep Underground Neutrino Experiment (DUNE) to neutrino oscillation is determined, based on a full simulation, reconstruction, and event selection of the far detector and a full simulation and parameterized analysis of the near detector. Detailed uncertainties due to the flux prediction, neutrino interaction model, and detector effects are included. DUNE will resolve the neutrino mass ordering to a precision of 5σ, for all δ_(CP) values, after 2 years of running with the nominal detector design and beam configuration. It has the potential to observe charge-parity violation in the neutrino sector to a precision of 3σ (5σ) after an exposure of 5 (10) years, for 50% of all δ_(CP) values. It will also make precise measurements of other parameters governing long-baseline neutrino oscillation, and after an exposure of 15 years will achieve a similar sensitivity to sin²θ₁₃ to current reactor experiments

    First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform

    Get PDF
    The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber with an active volume of 7.2× 6.1× 7.0 m3. It is installed at the CERN Neutrino Platform in a specially-constructed beam that delivers charged pions, kaons, protons, muons and electrons with momenta in the range 0.3 GeV/c to 7 GeV/c. Beam line instrumentation provides accurate momentum measurements and particle identification. The ProtoDUNE-SP detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment, and it incorporates full-size components as designed for that module. This paper describes the beam line, the time projection chamber, the photon detectors, the cosmic-ray tagger, the signal processing and particle reconstruction. It presents the first results on ProtoDUNE-SP\u27s performance, including noise and gain measurements, dE/dx calibration for muons, protons, pions and electrons, drift electron lifetime measurements, and photon detector noise, signal sensitivity and time resolution measurements. The measured values meet or exceed the specifications for the DUNE far detector, in several cases by large margins. ProtoDUNE-SP\u27s successful operation starting in 2018 and its production of large samples of high-quality data demonstrate the effectiveness of the single-phase far detector design
    corecore