12 research outputs found
Enabling a High Throughput Real Time Data Pipeline for a Large Radio Telescope Array with GPUs
The Murchison Widefield Array (MWA) is a next-generation radio telescope
currently under construction in the remote Western Australia Outback. Raw data
will be generated continuously at 5GiB/s, grouped into 8s cadences. This high
throughput motivates the development of on-site, real time processing and
reduction in preference to archiving, transport and off-line processing. Each
batch of 8s data must be completely reduced before the next batch arrives.
Maintaining real time operation will require a sustained performance of around
2.5TFLOP/s (including convolutions, FFTs, interpolations and matrix
multiplications). We describe a scalable heterogeneous computing pipeline
implementation, exploiting both the high computing density and FLOP-per-Watt
ratio of modern GPUs. The architecture is highly parallel within and across
nodes, with all major processing elements performed by GPUs. Necessary
scatter-gather operations along the pipeline are loosely synchronized between
the nodes hosting the GPUs. The MWA will be a frontier scientific instrument
and a pathfinder for planned peta- and exascale facilities.Comment: Version accepted by Comp. Phys. Com
Murchison Widefield Array rapid-response observations of the short GRB 180805A
Abstract
Here we present stringent low-frequency (185 MHz) limits on coherent radio emission associated with a short-duration gamma-ray burst (SGRB). Our observations of the short gamma-ray burst (GRB) 180805A were taken with the upgraded Murchison Widefield Array (MWA) rapid-response system, which triggered within 20s of receiving the transient alert from the Swift Burst Alert Telescope, corresponding to 83.7 s post-burst. The SGRB was observed for a total of 30 min, resulting in a
persistent flux density upper limit of 40.2 mJy beam–1. Transient searches were conducted at the Swift position of this GRB on 0.5 s, 5 s, 30 s and 2 min timescales, resulting in
limits of 570–1 830, 270–630, 200–420, and 100–200 mJy beam–1, respectively. We also performed a dedispersion search for prompt signals at the position of the SGRB with a temporal and spectral resolution of 0.5 s and 1.28 MHz, respectively, resulting in a
fluence upper-limit range from 570 Jy ms at DM
pc cm–3 (
) to 1 750 Jy ms at DM
pc cm–3 (
, corresponding to the known redshift range of SGRBs. We compare the fluence prompt emission limit and the persistent upper limit to SGRB coherent emission models assuming the merger resulted in a stable magnetar remnant. Our observations were not sensitive enough to detect prompt emission associated with the alignment of magnetic fields of a binary neutron star just prior to the merger, from the interaction between the relativistic jet and the interstellar medium (ISM) or persistent pulsar-like emission from the spin-down of the magnetar. However, in the case of a more powerful SGRB (a gamma-ray fluence an order of magnitude higher than GRB 180805A and/or a brighter X-ray counterpart), our MWA observations may be sensitive enough to detect coherent radio emission from the jet-ISM interaction and/or the magnetar remnant. Finally, we demonstrate that of all current low- frequency radio telescopes, only the MWA has the sensitivity and response times capable of probing prompt emission models associated with the initial SGRB merger event.</jats:p
Cosmological distance indicators
We review three distance measurement techniques beyond the local universe:
(1) gravitational lens time delays, (2) baryon acoustic oscillation (BAO), and
(3) HI intensity mapping. We describe the principles and theory behind each
method, the ingredients needed for measuring such distances, the current
observational results, and future prospects. Time delays from strongly lensed
quasars currently provide constraints on with < 4% uncertainty, and with
1% within reach from ongoing surveys and efforts. Recent exciting discoveries
of strongly lensed supernovae hold great promise for time-delay cosmography.
BAO features have been detected in redshift surveys up to z <~ 0.8 with
galaxies and z ~ 2 with Ly- forest, providing precise distance
measurements and with < 2% uncertainty in flat CDM. Future BAO
surveys will probe the distance scale with percent-level precision. HI
intensity mapping has great potential to map BAO distances at z ~ 0.8 and
beyond with precisions of a few percent. The next years ahead will be exciting
as various cosmological probes reach 1% uncertainty in determining , to
assess the current tension in measurements that could indicate new
physics.Comment: Review article accepted for publication in Space Science Reviews
(Springer), 45 pages, 10 figures. Chapter of a special collection resulting
from the May 2016 ISSI-BJ workshop on Astronomical Distance Determination in
the Space Ag