1 research outputs found
A Random Matrix Model of Adiabatic Quantum Computing
We present an analysis of the quantum adiabatic algorithm for solving hard
instances of 3-SAT (an NP-complete problem) in terms of Random Matrix Theory
(RMT). We determine the global regularity of the spectral fluctuations of the
instantaneous Hamiltonians encountered during the interpolation between the
starting Hamiltonians and the ones whose ground states encode the solutions to
the computational problems of interest. At each interpolation point, we
quantify the degree of regularity of the average spectral distribution via its
Brody parameter, a measure that distinguishes regular (i.e., Poissonian) from
chaotic (i.e., Wigner-type) distributions of normalized nearest-neighbor
spacings. We find that for hard problem instances, i.e., those having a
critical ratio of clauses to variables, the spectral fluctuations typically
become irregular across a contiguous region of the interpolation parameter,
while the spectrum is regular for easy instances. Within the hard region, RMT
may be applied to obtain a mathematical model of the probability of avoided
level crossings and concomitant failure rate of the adiabatic algorithm due to
non-adiabatic Landau-Zener type transitions. Our model predicts that if the
interpolation is performed at a uniform rate, the average failure rate of the
quantum adiabatic algorithm, when averaged over hard problem instances, scales
exponentially with increasing problem size.Comment: 9 pages, 7 figure