50 research outputs found

    Seasonality in the Surface Energy Balance of Tundra in the Lower Mackenzie River Basin

    Get PDF
    This study details seasonal characteristics in the annual surface energy balance of upland and lowland tundra during the 1998–99 water year (Y2). It contrasts the results with the 1997–98 water year (Y1) and relates the findings to the climatic normals for the lower Mackenzie River basin region. Both years were much warmer than the long-term average, with Y1 being both warmer and wetter than Y2. Six seasons are defined as early winter, midwinter, late winter, spring, summer, and fall. The most rapid changes in the surface energy balance occur in spring, fall, and late winter. Of these, spring is the most dynamic, and there is distinct asymmetry between rates of change in spring and those in fall. Rates of change of potential insolation (extraterrestrial solar radiation) in late winter, spring, and fall are within 10% of one another, being highest in late winter and smallest in spring. Rates of change in air temperature and ground temperature are twice as large in spring as in fall and late winter, when they are about the same. Rates of change in components of the energy balance in spring are twice and 4 times as large as in fall and late winter, respectively. The timing of snowpack ripening and snowmelt is the major agent determining the magnitude of asymmetry between fall and spring. This timing is a result of interaction between the solar cycle, air temperature, and snowpack longevity. Based on evidence from this study, potential surface responses to a 18C increase in air temperature are small to moderate in most seasons, but are large in spring when increases range from 7% to 10% of average surface energy fluxes

    The Annual Carbon Budget for Fen and Forest in a Wetland at Arctic Treeline

    Get PDF
    Three separate research efforts conducted in the same wetland-peatland system in the northern Hudson Bay Lowland near the town of Churchill, Manitoba, allow a comparison of two carbon budget estimates, one derived from long-term growth rates of organic soil and the other based on shorter-term flux measurements. For a tundra fen and an open subarctic forest, calculations of organic soil accumulation or loss over the last half-century indicate that while the fen on average has lost small amounts of carbon from the ecosystem, the adjacent forest has gained larger amounts of atmospheric carbon dioxide. These longer-term data are supported by shorter-term flux measurements and estimates, which also show carbon loss by the fen and carbon uptake by the forest. The shorter-term data indicate that the fen's carbon loss is largely attributable to exceptionally dry years, especially if they are warm. The forest may gain carbon at an increased rate as it matures and during warm growing seasons. Also, the changes in relief of the dynamic hummock-hollow landscape in the fen may inhibit photosynthesis.Trois travaux de recherche distincts portant sur le même système de marécages/tourbières situés dans la partie septentrionale des basses-terres de la baie d'Hudson, près de la ville de Churchill au Manitoba, permettent de comparer deux estimations du budget de carbone, l'une tirée des taux de croissance à long terme du sol organique et l'autre fondée sur des mesures du flux à plus court terme. Pour une tourbière basse de toundra et une forêt claire subarctique, les calculs de l'accumulation ou de la perte de sol organique au cours des cinquante dernières années révèlent que, si la tourbière basse a perdu en moyenne de petites quantités du carbone présent dans l'écosystème, la forêt adjacente a acquis des quantités plus grandes de bioxyde de carbone atmosphérique. Ces données établies sur une période relativement longue sont étayées par des mesures et estimations du flux à plus court terme, qui révèlent également une perte de carbone par la tourbière basse et une absorption de carbone par la forêt. Les données à plus court terme montrent que la perte de carbone par la tourbière basse est due en grande partie à des années de sécheresse exceptionnelle, surtout s'il fait chaud. Il se peut que la forêt acquière du carbone à une vitesse accrue en devenant mature et au cours des saisons de croissance chaudes. Il est en outre possible que les changements dans le relief dynamique en bosses et en creux de la tourbière basse bloquent la photosynthèse

    Acute and Persistent Mycobacterium tuberculosis Infections Depend on the Thiol Peroxidase TPX

    Get PDF
    The macrophage is the natural niche of Mycobacterium tuberculosis infection. In order to combat oxidative and nitrosative stresses and persist in macrophages successfully, M. tuberculosis is endowed with a very efficient antioxidant complex. Amongst these antioxidant enzymes, TpX is the only one in M. tuberculosis with sequence homology to thiol peroxidase. Previous reports have demonstrated that the M. tuberculosis TpX protein functions as a peroxidase in vitro. It is the dominant antioxidant which protects M. tuberculosis against oxidative and nitrosative stresses. The level of the protein increases in oxidative stress. To determine the roles of tpx gene in M. tuberculosis survival and virulence in vivo, we constructed an M. tuberculosis strain lacking the gene. The characteristics of the mutant were examined in an in vitro stationary phase model, in response to stresses; in murine bone marrow derived macrophages and in an acute and an immune resistant model of murine tuberculosis. The tpx mutant became sensitive to H2O2 and NO compared to the wild type strain. Enzymatic analysis using bacterial extracts from the WT and the tpx mutant demonstrated that the mutant contains reduced peroxidase activity. As a result of this, the mutant failed to grow and survive in macrophages. The growth deficiency in macrophages became more pronounced after interferon-γ activation. In contrast, its growth was significantly restored in the macrophages of inducible nitric oxide synthase (iNOS or NOS2) knockout mice. Moreover, the tpx mutant was impaired in its ability to initiate an acute infection and to maintain a persistent infection. Its virulence was attenuated. Our results demonstrated that tpx is required for M. tuberculosis to deal with oxidative and nitrosative stresses, to survive in macrophages and to establish acute and persistent infections in animal tuberculosis models

    A Tri-Oceanic Perspective: DNA Barcoding Reveals Geographic Structure and Cryptic Diversity in Canadian Polychaetes

    Get PDF
    Although polychaetes are one of the dominant taxa in marine communities, their distributions and taxonomic diversity are poorly understood. Recent studies have shown that many species thought to have broad distributions are actually a complex of allied species. In Canada, 12% of polychaete species are thought to occur in Atlantic, Arctic, and Pacific Oceans, but the extent of gene flow among their populations has not been tested.Sequence variation in a segment of the mitochondrial cytochrome c oxidase I (COI) gene was employed to compare morphological versus molecular diversity estimates, to examine gene flow among populations of widespread species, and to explore connectivity patterns among Canada's three oceans. Analysis of 1876 specimens, representing 333 provisional species, revealed 40 times more sequence divergence between than within species (16.5% versus 0.38%). Genetic data suggest that one quarter of previously recognized species actually include two or more divergent lineages, indicating that richness in this region is currently underestimated. Few species with a tri-oceanic distribution showed genetic cohesion. Instead, large genetic breaks occur between Pacific and Atlantic-Arctic lineages, suggesting their long-term separation. High connectivity among Arctic and Atlantic regions and low connectivity with the Pacific further supports the conclusion that Canadian polychaetes are partitioned into two distinct faunas.Results of this study confirm that COI sequences are an effective tool for species identification in polychaetes, and suggest that DNA barcoding will aid the recognition of species overlooked by the current taxonomic system. The consistent geographic structuring within presumed widespread species suggests that historical range fragmentation during the Pleistocene ultimately increased Canadian polychaete diversity and that the coastal British Columbia fauna played a minor role in Arctic recolonization following deglaciation. This study highlights the value of DNA barcoding for providing rapid insights into species distributions and biogeographic patterns in understudied groups

    Search for high-mass narrow resonances in virtual photon-photon interactions

    Full text link

    Study of baryon correlations in e

    Full text link

    Pion and Kaon Pair Production in Photon-Photon Collisions

    Full text link

    Production of four-prong final states in photon-photon collisions

    Full text link

    Exclusive production of proton-antiproton pairs in two-photon collisions

    Full text link
    corecore