2,852 research outputs found
National Rugby League athletes and tendon tap reflex assessment: A matched cohort clinical study
BACKGROUND: Limited research suggests elite athletes may differ from non-athletes in clinical tendon tap reflex responses. METHODS: In this matched cohort study, 25 elite rugby league athletes were compared with 29 non-athletes to examine differences in tendon reflex responses. Relationships between reflex responses and lengths of players’ careers were also examined. Biceps, triceps, patellar and Achilles tendon reflexes were clinically assessed. RESULTS: Right and left reflexes were well correlated for each tendon (r(S) = 0.7–0.9). The elite rugby league athletes exhibited significantly weaker reflex responses than non-athletes in all four tendons (p < 0.005). Biceps reflexes demonstrated the largest difference and Achilles reflexes the smallest difference. Moderate negative correlations (r(S) = −0.3–0.6) were observed between reflex responses and lengths of players’ careers. CONCLUSIONS: Future research is required to further elucidate mechanisms resulting in the observed differences in tendon reflexes and to ensure clinical tendon tap examinations and findings can be interpreted appropriately in this athletic population
Learning and Transfer of Modulated Locomotor Controllers
We study a novel architecture and training procedure for locomotion tasks. A
high-frequency, low-level "spinal" network with access to proprioceptive
sensors learns sensorimotor primitives by training on simple tasks. This
pre-trained module is fixed and connected to a low-frequency, high-level
"cortical" network, with access to all sensors, which drives behavior by
modulating the inputs to the spinal network. Where a monolithic end-to-end
architecture fails completely, learning with a pre-trained spinal module
succeeds at multiple high-level tasks, and enables the effective exploration
required to learn from sparse rewards. We test our proposed architecture on
three simulated bodies: a 16-dimensional swimming snake, a 20-dimensional
quadruped, and a 54-dimensional humanoid. Our results are illustrated in the
accompanying video at https://youtu.be/sboPYvhpraQComment: Supplemental video available at https://youtu.be/sboPYvhpra
- …