39 research outputs found
Three Decades Single Center Experience of Airway Complications After Lung Transplantation
Post lung transplantation airway complications like necrosis, stenosis, malacia and dehiscence cause significant morbidity, and are most likely caused by post-operative hypo perfusion of the anastomosis. Treatment can be challenging, and airway stent placement can be necessary in severe cases. Risk factors for development of airway complications vary between studies. In this single center retrospective cohort study, all lung transplant recipients between November 1990 and September 2020 were analyzed and clinically relevant airway complications of the anastomosis or distal airways were identified and scored according to the ISHLT grading system. We studied potential risk factors for development of airway complications and evaluated the impact on survival. The treatment modalities were described. In 651 patients with 1,191 airway anastomoses, 63 patients developed 76 clinically relevant airway complications of the airway anastomoses or distal airways leading to an incidence of 6.4% of all anastomoses, mainly consisting of airway stenosis (67%). Development of airway complications significantly affects median survival in post lung transplant patients compared to patients without airway complication (101 months versus 136 months, p = 0.044). No significant risk factors for development of airway complication could be identified. Previously described risk factors could not be confirmed. Airway stents were required in 55% of the affected patients. Median survival is impaired by airway complications after lung transplantation. In our cohort, no significant risk factors for the development of airway complications could be identified.</jats:p>
Is logistically motivated ex vivo lung perfusion a good idea?
Ex vivo lung perfusion (EVLP) is a technique for reconditioning and evaluating lungs. However, the use of EVLP for logistical reasons is still under discussion. In this retrospective study, all EVLPs performed between July 2012 and October 2019 were analyzed for ventilation and perfusion data. After transplantation, primary graft dysfunction (PGD), lung function, chronic lung allograft dysfunction (CLAD)-free survival, and overall survival were analyzed. Fifty EVLPs were performed: seventeen logistic EVLPs led to 15 lung transplantations (LT) and two rejections (LR), and 33 medical EVLPs resulted in 26 lung transplantations (MT) and seven rejections (MR). Pre-EVLP PaO2 was lower for MT than LT (p < 0.05). Dynamic lung compliance remained stable in MT and LT but decreased in MR and LR. Plateau airway pressure started at a higher level in MR (p < 0.05 MT vs. MR at T60) and increased further in LR. After transplantation, there were no differences between MT and LT in PGD, lung function, CLAD-free survival, and overall survival. In addition, the LT group was compared with a cohort group receiving standard donor lungs without EVLP (LTx). There were no significant differences between LT and LTx for PGD, CLAD-free survival, and overall survival. FVC was significantly lower in LT than in LTx after 1 year (p = 0.005). We found that LT lungs appear to perform better than MT lungs on EVLP. In turn, the outcome in the LT group was comparable with the LTx group. Overall, lung transplantation after EVLP for logistic reasons is safe and makes transplantation timing controllable.<br/
Analysis of Released Circulating Tumor Cells During Surgery for Non-Small Cell Lung Cancer:are they what they appear to be?
Purpose: Tumor cells from patients with lung cancer are expelled from the primary tumor into the blood, but difficult to detect in the peripheral circulation. We studied the release of circulating tumor cells (CTCs) during surgery to test the hypothesis that CTC counts are influenced by hemodynamic changes (caused by surgical approach) and manipulation. Experimental Design: Patients undergoing video-assisted thoracic surgery (VATS) or open surgery for (suspected) primary lung cancer were included. Blood samples were taken before surgery (T0) from the radial artery (RA), from both the RA and pulmonary vein (PV) when the PV was located (T1) and when either the pulmonary artery (T2 open) or the PV (T2VATS) was dissected. The CTCs were enumerated using the CellSearch system. Single-cell whole-genome sequencing was performed on isolated CTCs for aneuploidy. Results: CTCs were detected in 58 of 138 samples (42%) of 31 patients. CTCs were more often detected in the PV (70%) compared with the RA (22%, P <0.01) and in higher counts ( P <0.01). After surgery, the RA but not the PV showed less often CTCs (P = 0.02). Type of surgery did not influence CTC release. Only six of 496 isolated CTCs showed aneuploidy, despite matched primary tumor tissue being aneuploid. Euploid so-called CTCs had a different morphology than aneuploid. Conclusions: CTCs defined by CellSearch were identified more often and in higher numbers in the PV compared with the RA, suggesting central clearance. The majority of cells in the PV were normal epithelial cells and outnumbered CTCs. Release of CTCs was not influenced by surgical approach
Long-term outcome and bridging success of patients evaluated and bridged to lung transplantation on the ICU
Background: Evaluating and bridging patients to lung transplantation (LTx) on the intensive care unit (ICU) remains controversial, especially without a previous waitlist status. Long term outcome data after LTx from ICU remains scarce. We compared long-term survival and development of chronic lung allograft dysfunction (CLAD) in elective and LTx from ICU, with or without previous waitlist status. Methods: Patients transplanted between 2004 and 2018 in 2 large academic Dutch institutes were included. Long-term survival and development of CLAD was compared in patients who received an elective LTx (ELTx), those bridged and transplanted from the ICU with a previous listing status (BTT), and in patients urgently evaluated and bridged on ICU (EBTT). Results: A total of 582 patients underwent a LTx, 70 (12%) from ICU, 39 BTT and 31 EBTT. Patients transplanted from ICU were younger than ELTx (46 vs 51 years) and were bridged with mechanical ventilation (n = 42 (60%)), extra corporeal membrane oxygenation (n = 28 (40%)), or both (n = 21/28). Bridging success was 48% in the BTT group and 72% in the EBTT group. Patients bridged to LTx on ICU had similar 1 and 5 year survival (86.8% and 78.4%) compared to elective LTx (86.8% and 71.9%). This was not different between the BTT and EBTT group. 5 year CLAD free survival was not different in patients transplanted from ICU vs ELTx. Conclusion: Patients bridged to LTx on the ICU with and without prior listing status had excellent short and long-term patient and graft outcomes, and was similar to patients electively transplanted.</p
Long-term outcome and bridging success of patients evaluated and bridged to lung transplantation on the ICU
Background: Evaluating and bridging patients to lung transplantation (LTx) on the intensive care unit (ICU) remains controversial, especially without a previous waitlist status. Long term outcome data after LTx from ICU remains scarce. We compared long-term survival and development of chronic lung allograft dysfunction (CLAD) in elective and LTx from ICU, with or without previous waitlist status. Methods: Patients transplanted between 2004 and 2018 in 2 large academic Dutch institutes were included. Long-term survival and development of CLAD was compared in patients who received an elective LTx (ELTx), those bridged and transplanted from the ICU with a previous listing status (BTT), and in patients urgently evaluated and bridged on ICU (EBTT). Results: A total of 582 patients underwent a LTx, 70 (12%) from ICU, 39 BTT and 31 EBTT. Patients transplanted from ICU were younger than ELTx (46 vs 51 years) and were bridged with mechanical ventilation (n = 42 (60%)), extra corporeal membrane oxygenation (n = 28 (40%)), or both (n = 21/28). Bridging success was 48% in the BTT group and 72% in the EBTT group. Patients bridged to LTx on ICU had similar 1 and 5 year survival (86.8% and 78.4%) compared to elective LTx (86.8% and 71.9%). This was not different between the BTT and EBTT group. 5 year CLAD free survival was not different in patients transplanted from ICU vs ELTx. Conclusion: Patients bridged to LTx on the ICU with and without prior listing status had excellent short and long-term patient and graft outcomes, and was similar to patients electively transplanted.</p
Extracorporeal membrane oxygenator as a bridge to successful surgical repair of bronchopleural fistula following bilateral sequential lung transplantation: a case report and review of literature
<p>Abstract</p> <p>Background</p> <p>Lung transplantation (LTx) is widely accepted as a therapeutic option for end-stage respiratory failure in cystic fibrosis. However, airway complications remain a major cause of morbidity and mortality in these patients, serious airway complications like bronchopleural fistula (BPF) are rare, and their management is very difficult.</p> <p>Case presentation</p> <p>A 47-year-old man with end-stage respiratory failure due to cystic fibrosis underwent bilateral sequential lung transplantation. Severe post-operative bleeding occurred due to dense intrapleural adhesions of the native lungs. He was re-explored and packed leading to satisfactory haemostasis. He developed a bronchopleural fistula on the 14<sup>th </sup>post-operative day. The fistula was successfully repaired using pericardial and intercostal vascular flaps with veno-venous extracorporeal membrane oxygenator (VV-ECMO) support. Subsequently his recovery was uneventful.</p> <p>Conclusion</p> <p>The combination of pedicled intercostal and pericardial flaps provide adequate vascular tissue for sealing a large BPF following LTx. Veno-venous ECMO allows a feasible bridge to recovery.</p
Endosonography With or Without Confirmatory Mediastinoscopy for Resectable Lung Cancer:A Randomized Clinical Trial
PURPOSE:Resectable non-small-cell lung cancer (NSCLC) with a high probability of mediastinal nodal involvement requires mediastinal staging by endosonography and, in the absence of nodal metastases, confirmatory mediastinoscopy according to current guidelines. However, randomized data regarding immediate lung tumor resection after systematic endosonography versus additional confirmatory mediastinoscopy before resection are lacking.METHODS:Patients with (suspected) resectable NSCLC and an indication for mediastinal staging after negative systematic endosonography were randomly assigned to immediate lung tumor resection or confirmatory mediastinoscopy followed by tumor resection. The primary outcome in this noninferiority trial (noninferiority margin of 8% that previously showed to not compromise survival, Pnoninferior <.0250) was the presence of unforeseen N2 disease after tumor resection with lymph node dissection. Secondary outcomes were 30-day major morbidity and mortality.RESULTS:Between July 17, 2017, and October 5, 2020, 360 patients were randomly assigned, 178 to immediate lung tumor resection (seven dropouts) and 182 to confirmatory mediastinoscopy first (seven dropouts before and six after mediastinoscopy). Mediastinoscopy detected metastases in 8.0% (14/175; 95% CI, 4.8 to 13.0) of patients. Unforeseen N2 rate after immediate resection (8.8%) was noninferior compared with mediastinoscopy first (7.7%) in both intention-to-treat (Δ, 1.03%; UL 95% CIΔ, 7.2%; Pnoninferior =.0144) and per-protocol analyses (Δ, 0.83%; UL 95% CIΔ, 7.3%; Pnoninferior =.0157). Major morbidity and 30-day mortality was 12.9% after immediate resection versus 15.4% after mediastinoscopy first (P =.4940).CONCLUSION:On the basis of our chosen noninferiority margin in the rate of unforeseen N2, confirmatory mediastinoscopy after negative systematic endosonography can be omitted in patients with resectable NSCLC and an indication for mediastinal staging.</p