32 research outputs found

    A Rotating Fluidized Bed in a Static Geometry: Experimental Proof of Concept

    Get PDF
    The new concept of a rotating fluidized bed in a static geometry (RFB-SG) is presented (1). The rotating motion of the particle bed and the tangential fluidization of the solids are obtained by the tangential injection of the fluidization gas via multiple gas inlet slots in the outer cylindrical wall of the fluidization chamber. The new fluidization concept is experimentally investigated and proven using either large diameter, low density polymer particles or small diameter, higher density Alumina particles

    Vascular Permeability in Diseases

    No full text
    Vascular permeability is a selective mechanism that maintains the exchange between vessels, tissues, and organs. The regulation was mostly studied during the nineteenth century by physiologists who defined physical laws and equations, taking blood, tissue interstitial, and oncotic pressure into account. During the last decades, a better knowledge of vascular cell functions and blood-vessel interactions opens a new area of vascular biology. Endothelial cell receptors vascular cell adhesion molecule (VCAM), intercellular cell adhesion molecule (ICAM), vascular endothelial growth factor receptor (VEGFR-2), receptor for advanced glycation end products (RAGE), and mediators were identified and their role in homeostasis and pathological situations was described. The molecular differences of endothelial cell junctions (tight, gap, and adherens junctions) and their role in vascular permeability were characterized in different organs. The main mediators of vasomotricity and permeability, such as prostaglandins, nitric oxide (NO), prostacyclin, vascular growth factor (VEGF), and cytokines, have been demonstrated to possess major functions in steady state and pathological situations. Leukocytes were shown to adhere to endothelium and migrate during inflammatory situations and infectious diseases. Increased vascular permeability is linked to endothelium integrity. Glycocalyx, when intact, may limit cancer cell metastasis. Biological modifications of blood and tissue constituents occurring in diabetes mellitus were responsible for increased permeability and, consequently, ocular and renal complications. Vascular pressure and fluidity are major determinants of pulmonary and cerebral edema. Beside the treatment of the infectious disease, of the blood circulation dysfunction and inflammatory condition, drugs (cyclooxygenase inhibitors) and specific antibodies anti-cytokine (anti-VEGF) have been demonstrated to reduce the severity and the mortality in diseases that exhibited enhanced vascular permeability

    Endothelial Cell Participation in Inflammatory Reaction

    No full text
    Inflammation is an old concept that has started to be considered as an important factor in infection and chronic diseases. The role of leukocytes, the plasmatic components, then of the mediators such as prostaglandins, cytokines, and, in recent decades, of the endothelium has completed the concept of the inflammation process. The function of the endothelium appeared to be crucial as a regulator or the initiator of the inflammatory process. Culture of human endothelial cells and experimental systems made it possible to define the molecular basis of inflammation in vascular diseases, in diabetes mellitus, atherosclerosis, vasculitis and thromboembolic complications. Advanced glycation end product receptor (RAGE), present on endothelial cells (ECs) and monocytes, participates in the activation of these cells in inflammatory conditions. Inflammasome is a cytosolic multiprotein that controls the response to diverse microorganisms. It is positively regulated by stimulator of interferon response CGAMP interactor-1 (STING1). Angiogenesis and thrombotic events are dysregulated during inflammation. ECs appear to be a protector, but also a possible initiator of thrombosis

    Old and New Blood Markers in Human Colorectal Cancer

    No full text
    Cancer is a predominant cause of mortality all over the world. Lung, prostate, and colorectal cancer are the more frequent in men while breast and colorectal have a high incidence in women. Major progress aside, some cancers are still frequent and one major issue is improvements in detection methods. Imaging techniques have a major role, but inflammatory, tumoral markers and calculated scores may contribute to the assessment of prognosis. The erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), and carcinoembryonic antigen cell adhesion molecule (CEACAM) have been used for decades and do not have a clear use for diagnosis or prognosis yet. The CEACAM family includes 12 human members, and some of them have a cluster differentiation (CD). CD66 may be an interesting indicator of disease severity. Beside interleukin-6 (IL-6), the high level of which is observed in patients with a high mortality rate, other cytokines IL-17A, IL-22, and transforming growth factor -β (TGF-β) are expressed at the tumor level. The detection of circulating tumor cells has been improved but is still of undetermined value. Circulating tumor DNA (ctDNA) was recently studied in CRC stage II patients and may be helpful for chemotherapy management

    Vascular Permeability in Diseases

    No full text
    Vascular permeability is a selective mechanism that maintains the exchange between vessels, tissues, and organs. The regulation was mostly studied during the nineteenth century by physiologists who defined physical laws and equations, taking blood, tissue interstitial, and oncotic pressure into account. During the last decades, a better knowledge of vascular cell functions and blood-vessel interactions opens a new area of vascular biology. Endothelial cell receptors vascular cell adhesion molecule (VCAM), intercellular cell adhesion molecule (ICAM), vascular endothelial growth factor receptor (VEGFR-2), receptor for advanced glycation end products (RAGE), and mediators were identified and their role in homeostasis and pathological situations was described. The molecular differences of endothelial cell junctions (tight, gap, and adherens junctions) and their role in vascular permeability were characterized in different organs. The main mediators of vasomotricity and permeability, such as prostaglandins, nitric oxide (NO), prostacyclin, vascular growth factor (VEGF), and cytokines, have been demonstrated to possess major functions in steady state and pathological situations. Leukocytes were shown to adhere to endothelium and migrate during inflammatory situations and infectious diseases. Increased vascular permeability is linked to endothelium integrity. Glycocalyx, when intact, may limit cancer cell metastasis. Biological modifications of blood and tissue constituents occurring in diabetes mellitus were responsible for increased permeability and, consequently, ocular and renal complications. Vascular pressure and fluidity are major determinants of pulmonary and cerebral edema. Beside the treatment of the infectious disease, of the blood circulation dysfunction and inflammatory condition, drugs (cyclooxygenase inhibitors) and specific antibodies anti-cytokine (anti-VEGF) have been demonstrated to reduce the severity and the mortality in diseases that exhibited enhanced vascular permeability

    Molecular Research of Regulation of Red Blood Cells in Health, Hereditary or Acquired Diseases

    No full text
    During the first era of humanity, the conditions of life, including hunting, fighting, obtaining food, and diseases, were associated with frequent hemorrhages, anemia, and infections, which led to death or untreatable conditions [...

    Glycation des protéines et dysfonction endothéliale

    No full text
    Les produits de glycation avancée ou AGE font partie d'une famille de molécules hétérogènes, retrouvées en excès au cours du diabète, de l'insuffisance rénale et du vieillissement. Les lésions vasculaires sont corrélées avec leur accumulation, comme au cours de la rétinopathie ou la glomérulosclérose. La glycation des protéines des matrices extracellulaires est corrélée avec la sévérité des angiopathies diabétiques. L'activation du récepteur aux AGE (RAGE) est impliquée dans leurs effets délétères. La cellule endothéliale exprime alors un phénotype pro-inflammatoire associé à l'expression de molécules d'adhésion, de cytokines, de facteurs chimioattractants ou encore de facteur tissulaire. Les effets délétères de l'interaction AGE-RAGE font intervenir la production d'espèces réactives de l'oxygène via notamment la NADPH oxydase. Les agents inhibiteurs de la formation d'AGE, qui augmentent leur dégradation ou qui neutralisent leur activité, représentent une perspective thérapeutique pour protéger des atteintes vasculaires chez les diabétiques
    corecore