5,260 research outputs found
Epitaxial Growth of LaSrFeO thin films by laser ablation
We report on the synthesis of high quality LaSrFeO (LSFO)
thin films using the pulsed laser deposition technique on both SrTiO (STO)
and LaAlO (LAO) substrates (100)-oriented. From X-Ray diffraction (XRD)
studies, we find that the films have an out-of-plane lattice parameter around
0.3865nm, almost independent of the substrate (i.e. the nature of the strains).
The transport properties reveal that, while LSFO films deposited on STO exhibit
an anomaly in the resistivity vs temperature at 180K (corresponding to the
charge-ordered transition and associated with a transition from a paramagnetic
to an antiferromagnetic state), the films grown on LAO display a very small
magnetoresistance behavior and present an hysteresis around 270K under the
application of a 4T magnetic field. The changes in transport properties between
both substrates are discussed and compared with the corresponding single
crystals.Comment: 9 pages, 4 figure
Uncertainty in Model Predictions of Vibrio Vulnificus Response to Climate Variability and Change: A Chesapeake Bay Case Study
The effect that climate change and variability will have on waterborne bacteria is a topic of increasing concern for coastal ecosystems, including the Chesapeake Bay. Surface water temperature trends in the Bay indicate a warming pattern of roughly 0.3-0.4 C per decade over the past 30 years. It is unclear what impact future warming will have on pathogens currently found in the Bay, including Vibrio spp. Using historical environmental data, combined with three different statistical models of Vibrio vulnificus probability, we explore the relationship between environmental change and predicted Vibrio vulnificus presence in the upper Chesapeake Bay. We find that the predicted response of V. vulnificus probability to high temperatures in the Bay differs systematically between models of differing structure. As existing publicly available datasets are inadequate to determine which model structure is most appropriate, the impact of climatic change on the probability of V. vulnificus presence in the Chesapeake Bay remains uncertain. This result points to the challenge of characterizing climate sensitivity of ecological systems in which data are sparse and only statistical models of ecological sensitivity exist
Spherically symmetric static solution for colliding null dust
The Einstein equations are integrated in the presence of two (incoming and
outgoing) streams of null dust, under the assumptions of spherical symmetry and
staticity. The solution is also written in double null and radiation
coordinates and it is reinterpreted as an anisotropic fluid. Interior matching
with a static fluid and exterior matching with the Vaidya solution along null
hypersurfaces is discussed. The connection with two-dimensional dilaton gravity
is established.Comment: 12 pages, 7 figures, to appear in Phys. Rev.
Corrections to the universal behavior of the Coulomb-blockade peak splitting for quantum dots separated by a finite barrier
Building upon earlier work on the relation between the dimensionless interdot
channel conductance g and the fractional Coulomb-blockade peak splitting f for
two electrostatically equivalent dots, we calculate the leading correction that
results from an interdot tunneling barrier that is not a delta-function but,
rather, has a finite height V and a nonzero width xi and can be approximated as
parabolic near its peak. We develop a new treatment of the problem for g much
less than 1 that starts from the single-particle eigenstates for the full
coupled-dot system. The finiteness of the barrier leads to a small upward shift
of the f-versus-g curve at small values of g. The shift is a consequence of the
fact that the tunneling matrix elements vary exponentially with the energies of
the states connected. Therefore, when g is small, it can pay to tunnel to
intermediate states with single-particle energies above the barrier height V.
The correction to the zero-width behavior does not affect agreement with recent
experimental results but may be important in future experiments.Comment: Title changed from ``Non-universal...'' to ``Corrections to the
universal...'' No other changes. 10 pages, 1 RevTeX file with 2 postscript
figures included using eps
Quantum Computation with Quantum Dots
We propose a new implementation of a universal set of one- and two-qubit
gates for quantum computation using the spin states of coupled single-electron
quantum dots. Desired operations are effected by the gating of the tunneling
barrier between neighboring dots. Several measures of the gate quality are
computed within a newly derived spin master equation incorporating decoherence
caused by a prototypical magnetic environment. Dot-array experiments which
would provide an initial demonstration of the desired non-equilibrium spin
dynamics are proposed.Comment: 12 pages, Latex, 2 ps figures. v2: 20 pages (very minor corrections,
substantial expansion), submitted to Phys. Rev.
Even-odd parity effects in conductance and shot noise of metal-atomic wire-metal(superconducting) junctions
In this paper, we study the conductance and shot noise in transport through a
multi-site system in a two terminal configuration. The dependence of the
transport on the number of atoms in the atomic wire is investigated using a
tight-binding Hamiltonian and the nonequilibrium Green's function method. In
addition to reproducing the even-odd behavior in the transmission probability
at the Fermi energy or the linear response conductance in the normal-atomic
wire-normal metallic(NAN) junctions, we find the following: (i) The shot noise
is larger in the even-numbered atomic wire than in the odd-numbered wire. (ii)
The Andreev conductance displays the same even-odd parity effects in the
normal-atomic wire-superconducting(NAS) junctions. In general, the conductance
is higher in the odd-numbered atomic wire than in the even-numbered wire. When
the number of sites () is odd and the atomic wire is mirror symmetric with
respect to the center of the atomic wire, the conductance does not depend on
the details of the hopping matrices in the atomic wire, but is solely
determined by the coupling strength to the two leads. When is even, the
conductance is sensitive to the values of the hopping matrices.Comment: 12 pages, 9 figure
- âŠ