27 research outputs found

    Specific adhesion of glycophorin liposomes to a lectin surface in shear flow.

    Get PDF
    The adhesion of cells to other cells or to surfaces by receptor-ligand binding in a shear field is an important aspect of many different biological processes and various cell separation techniques. The purpose of this study was to observe the adhesion of model cells with receptor molecules embedded in their surfaces to a ligand-coated surface under well-defined flow conditions in a parallel plate flow chamber. Liposomes containing glycophorin were used as the model cells to permit a variation in the adhesion parameters and then to observe the effect on adhesion. A mathematical model for cell sedimentation was created to predict the deposition time and the velocity preceding adhesion for the selection of experimental operating conditions and the methods useful for data analysis. The likelihood of cell attachment was represented by a quantity called the sticking probability which was defined as the inverse of the number of times a liposome made contact with the surface before attachment occurred. The sticking probability decreased as the cell receptor concentration was lowered from approximately 10(4) to 10(2) receptors per 4-microns diam liposome and as the shear rate increased from 5 to 22 s-1. The effect of the wall shear rate and particle diameter on detachment of liposomes from a surface was also observed
    corecore