30,061 research outputs found

    Probing Unquenching Effects in the Gluon Polarisation in Light Mesons

    Full text link
    We introduce an extension to the ladder truncated Bethe-Salpeter equation for mesons and the rainbow truncated quark Dyson-Schwinger equations which includes quark-loop corrections to the gluon propagator. This truncation scheme obeys the axialvector Ward-Takahashi identity relating the quark self-energy and the Bethe-Salpeter kernel. Two different approximations to the Yang-Mills sector are used as input: the first is a sophisticated truncation of the full Yang-Mills Dyson-Schwinger equations, the second is a phenomenologically motivated form. We find that the spectra and decay constants of pseudoscalar and vector mesons are overall described well for either approach. Meson mass results for charge eigenstate vector and pseudoscalar meson masses are compared to lattice data. The effects of unquenching the system are small but not negligible.Comment: 26 pages, 13 figure

    L & M band infrared studies of V4332 Sagittarii - detection of the water-ice absorption band at 3.05 microns and the CO fundamental band in emission

    Full text link
    L and M band observations of the nova-like variable V4332 Sgr are presented. Two significant results are obtained viz. the unusual detection of water ice at 3.05 microns and the fundamental band of 12CO at 4.67 microns in emission. The ice feature is a first detection in a nova-like variable while the CO emission is rarely seen in novae. These results, when considered together with other existing data, imply that V4332 Sgr could be a young object surrounded by a circumstellar disc containing gas, dust and ice. The reason for a nova-like outburst to occur in such a system is unclear. But since planets are believed to form in such disks, it appears plausible that the enigmatic outburst of V4332 Sgr could be due to a planetary infall. We also give a more reliable estimate for an epoch of dust formation around V4332 Sgr which appears to have taken place rather late in 1999 - nearly five years after its outburst.Comment: 10 pages, 3 figures (to appear in ApJ(Letters), 2004

    Two-Point Functions of Coulomb Gauge Yang-Mills Theory

    Full text link
    The functional approach to Coulomb gauge Yang-Mills theory is considered within the standard, second order, formalism. The Dyson-Schwinger equations and Slavnov-Taylor identities concerning the two-point functions are derived explicitly and one-loop perturbative results are presented.Comment: 12 pages, no figure

    Slavnov-Taylor identities in Coulomb gauge Yang-Mills theory

    Full text link
    The Slavnov-Taylor identities of Coulomb gauge Yang-Mills theory are derived from the (standard, second order) functional formalism. It is shown how these identities form closed sets from which one can in principle fully determine the Green's functions involving the temporal component of the gauge field without approximation, given appropriate input.Comment: 20 pages, no figure

    Neutrino oscillations in matter of varying density

    Full text link
    We consider two-family neutrino oscillations in a medium of continuously-varying density as a limit of the process in a series of constant-density layers. We construct analytic expressions for the conversion amplitude at high energies within a medium with a density profile that is piecewise linear. We compare some cases to understand the type of effects that depend on the order of the material traversed by a neutrino beam.Comment: 10 page

    The Evolutionary Status of SS433

    Get PDF
    We consider possible evolutionary models for SS 433. We assume that common-envelope evolution is avoided if radiation pressure is able to expel most of a super-Eddington accretion flow from a region smaller than the accretor's Roche lobe. This condition is satisfied, at least initially, for largely radiative donors with masses in the range 4-12 solar masses. For donors more massive than about 5 solar masses, moderate mass ratios q = M_2/M_1 > 1 are indicated, thus tending to favor black-hole accretors. For lower mass donors, evolutionary considerations do not distinguish between a neutron star or black hole accretor. In all cases the mass transfer (and mass loss) rates are much larger than the likely mass-loss rate in the precessing jets. Almost all of the transferred mass is expelled at radii considerably larger than the jet acceleration region, producing the "stationary" H-alpha line, the infrared luminosity, and accounting for the low X-ray luminosity.Comment: 13 pages, Astrophysical Journal Letters, accepte

    Physisorption of Nucleobases on Graphene

    Get PDF
    We report the results of our first-principles investigation on the interaction of the nucleobases adenine (A), cytosine (C), guanine (G), thymine (T), and uracil (U) with graphene, carried out within the density functional theory framework, with additional calculations utilizing Hartree--Fock plus second-order Moeller-Plesset perturbation theory. The calculated binding energy of the nucleobases shows the following hierarchy: G > T ~ C ~ A > U, with the equilibrium configuration being very similar for all five of them. Our results clearly demonstrate that the nucleobases exhibit significantly different interaction strengths when physisorbed on graphene. The stabilizing factor in the interaction between the base molecule and graphene sheet is dominated by the molecular polarizability that allows a weakly attractive dispersion force to be induced between them. The present study represents a significant step towards a first-principles understanding of how the base sequence of DNA can affect its interaction with carbon nanotubes, as observed experimentally.Comment: 7 pages, 3 figure
    corecore