31,985 research outputs found
Hall current effects in dynamic magnetic reconnection solutions
The impact of Hall current contributions on flow driven planar magnetic merging solutions is discussed. The Hall current is important if the dimensionless Hall parameter (or normalized ion skin depth) satisfies cH>η where η is the inverse Lundquist number for the plasma. A dynamic analysis of the problem shows, however, that the Hall current initially manifests itself, not by modifying the planar reconnection field, but by inducing a non-reconnecting perpendicular "separator" component in the magnetic field. Only if the stronger condition c2/H > η is satisfied can Hall currents be expected to affect the planar merging. These analytic predictions are then tested by performing a series of numerical experiments in periodic geometry, using the full system of planar magnetohydrodynamic (MHD) equations. The numerical results confirm that the nature of the merging changes dramatically when the Hall coupling satisfies c2/H > η. In line with the analytic treatment of sheared reconnection, the coupling provided by the Hall term leads to the emergence of multiple current layers that can enhance the global Ohmic dissipation at the expense of the reconnection rate. However, the details of the dissipation depend critically on the symmetries of the simulation, and when the merging is "head-on" (i.e., comprises fourfold symmetry) the reconnection rate can be enhanced
Recommended from our members
Macromolecular organic acids in the Murchison meteorite
This study has detected bound organic acids within the Murchison meteorite organic macromolecule. Benzoic acid was the most abundant compound; other abundant compounds include C1 and C2 benzoic acids. Their origin and significance will be discussed
Analytic solutions of the magnetic annihilation and reconnection problems. I. Planar flow profiles
The phenomena of steady-state magnetic annihilation and reconnection in the vicinity of magnetic nulls are considered. It is shown that reconnective solutions can be derived by superposing the velocity and magnetic fields of simple magnetic annihilation models. These solutions contain most of the previous models for magnetic merging and reconnection, as well as introducing several new solutions. The various magnetic dissipation mechanisms are classified by examining the scaling of the Ohmic diffusion rate with plasma resistivity. Reconnection solutions generally allow more favorable "fast" dissipation scalings than annihilation models. In particular, reconnection models involving the advection of planar field components have the potential to satisfy the severe energy release requirements of the solar flare. The present paper is mainly concerned with magnetic fields embedded in strictly planar flowsâa discussion of the more complicated three-dimensional flow patterns is presented in Part II [Phys. Plasmas 4, 110 (1997)]
Bessel beam propagation: Energy localization and velocity
The propagation of a Bessel beam (or Bessel-X wave) is analyzed on the basis
of a vectorial treatment. The electric and magnetic fields are obtained by
considering a realistic situation able to generate that kind of scalar field.
Specifically, we analyze the field due to a ring-shaped aperture over a
metallic screen on which a linearly polarized plane wave impinges. On this
basis, and in the far field approximation, we can obtain information about the
propagation of energy flux and the velocity of the energy.Comment: 6 pages, 4 figure
Generalized Affine Coherent States: A Natural Framework for Quantization of Metric-like Variables
Affine variables, which have the virtue of preserving the positive-definite
character of matrix-like objects, have been suggested as replacements for the
canonical variables of standard quantization schemes, especially in the context
of quantum gravity. We develop the kinematics of such variables, discussing
suitable coherent states, their associated resolution of unity, polarizations,
and finally the realization of the coherent-state overlap function in terms of
suitable path-integral formulations.Comment: 17 pages, LaTeX, no figure
Recommended from our members
Scientific drilling of the Boltysh impact crater, Ukraine
Introduction: The Boltysh crater has been known for several decades and was first drilled in the 1960s as part of a study of economic oil shale deposits. Unfortunately, the cores were not curated and have been lost. We have re-drilled the impact crater and have recovered a near continuous record of ~400 m of organicrich sediments together with 15 m of suevite
Changes in the pronunciation of MÄori and implications for teachers and learners of MÄori
This paper discusses changes in the pronunciation of MÄori and implications for teachers and learners of MÄori. Data on changes in the pronunciation of MÄori derives from the MAONZE project (MÄori and New Zealand English with support from the Marsden fund). The project uses recordings from three sets of speakers to track changes in the pronunciation of MÄori and evaluate influence from English. Results from the project show changes in both vowel quality and vowel duration and some evidence of diphthong mergers in pairs such as ai/ae and ou/au, especially amongst the younger speakers. In terms of duration the younger speakers are producing smaller length distinctions between long/short vowel pairs other than /Ä, a/. We discuss the implications of such changes for those teaching MÄori and for students learning MÄori as a subject. These changes raise interesting questions concerning the pronunciation of MÄori by future generations
/u/ fronting and /t/ aspiration in MÄori and New Zealand English
This article examines the relationship between the frontness of /u/ and the aspiration of /t/ in both MÄori and New Zealand English (NZE). In both languages, these processes can be observed since the earliest recordings dating from the latter part of the nineteenth century. We report analyses of these developments for three groups of male speakers of MÄori spanning the twentieth century. We compare the MÄori analyses with analyses of related features of the speakers' English and of the English of monolingual contemporaries. The occurrence of these processes in MÄori cannot be seen simply as interference from NZE as the MÄori-speaking population became increasingly bilingual. We conclude that it was the arrival of English with its contrast between aspirated and unaspirated plosives, rather than direct borrowing, that was the trigger for the fronting of the hitherto stable back MÄori /u/ vowel together with increased aspiration of /t/ before both /i/ and /u/
Recommended from our members
Organic geochemistry of the crater-fill sediments from Boltysh impact crater, Ukraine
The Boltysh impact crater, is a complex structure formed on the basement rocks of the Ukrainian shield which has been dated at 65.17±0.64 Ma [1]. The Boltysh crater has been know for several decades and was originally drilled in the 1960s-1980s in a study of economic oil shale deposits. Unfortunately, the cores were not curated and have been lost. However we have recently re-drilled the impact crater and have recovered a near continuous record of ~400 m of organic rich sediments deposited in a deep isolated lake which overlie the basement rocks spanning a period ~10 Ma. At 24km diameter, Boltysh will not have contributed substantially to the worldwide devastation at the end of the
Cretaceous. However, the precise age of the Boltysh impact relative to the Chicxulub impact and its location on a stable low lying coastal plain which allowed formation of the postimpact crater lake make it a particularly important locality. After the impact, the crater quickly filled with water in a short marine phase but returned to fresh water which persisted for >10Ma [2]. These strata contain a valuable record of Paleogene environmental change in central Europe, and one of very few terrestrial records of the KT event. This pre-eminent record of the Paleogene can help us to answer several related scientific questions including the relative age of Boltysh compared with Chicxulub, recovery from the impact, and later climate signals. The organic geochemistry and playnology indicate main inputs to be algal and higher plant within most of the core although there are some marked changes in inputs in some sections. A number of carbon isotope excursions are also present within the core which are currently being further investigated
Recommended from our members
Alteration of the Nakhlite Lava Pile: was water on the surface, seeping down, or at depth, percolating up? Evidence (such as it is) from carbonates
We present carbon and oxygen isotope data on carbonates in five nakhlites and use the results to interpret the martian weathering processes
- âŠ