410 research outputs found

    Good Animals in Bad Places: Evaluating Landscape Attributes Associated with Elk Vulnerability to Wolf Predation

    Get PDF
    Vulnerability of prey to predators is heavily influenced by their respective physical and behavioral characteristics; however their interactions with landscape, and climate, collectively termed “environmental vulnerability,” may also assume considerable importance. Little is known about the impact of environmental vulnerability in large mammal systems, where post-encounter vulnerability may assume more importance than encounter probability. This study utilized 18 years of survival and mortality data for radio-collared elk (Cervus elaphus), in concert with abundance, distribution, and habitat use data prior to and following restoration of wolves (Canis lupus) to Yellowstone National Park to evaluate the relationship between environmental attributes and elk mortality. We modeled the odds of mortality for 108 elk in 1257 animal sample intervals from 1991-2009 across a range of environmental conditions and gradients of wolf predation risk to evaluate: 1) The relationship between landscape, habitat, and environmental attributes and elk vulnerability to wolf predation and 2) Changes in the attributes related to elk mortality before and after wolf colonization. In the absence of wolf predation, mortality risk for elk was primarily associated with physical attributes of elk known to influence starvation mortality. Following wolf reintroduction mortality risk was more strongly associated with characteristics of the landscape and climate within an animal’s home range. These environmental influences resulted in substantial changes in distribution and abundance of elk in the study system and suggests environmental heterogeneity may have an important influence on wolf and elk distributions and dynamics

    The Radial Velocity Experiment (rave): Second Data Release

    Get PDF
    We present the second data release of the Radial Velocity Experiment (RAVE), an ambitious spectroscopic survey to measure radial velocities and stellar atmosphere parameters (temperature, metallicity, surface gravity, and rotational velocity) of up to one million stars using the 6 dF multi-object spectrograph on the 1.2 m UK Schmidt Telescope of the Anglo-Australian Observatory (AAO). The RAVE program started in 2003, obtaining medium resolution spectra (median R = 7500) in the Ca-triplet region (8410-8795 ) for southern hemisphere stars drawn from the Tycho-2 and SuperCOSMOS catalogues, in the magnitude range 9 < I < 12. Following the first data release, the current release doubles the sample of published radial velocities, now containing 51,829 radial velocities for 49,327 individual stars observed on 141 nights between 2003 April 11 and 2005 March 31. Comparison with external data sets shows that the new data collected since 2004 April 3 show a standard deviation of 1.3 km s-1, about twice as good as for the first data release. For the first time, this data release contains values of stellar parameters from 22,407 spectra of 21,121 individual stars. They were derived by a penalized χ2 method using an extensive grid of synthetic spectra calculated from the latest version of Kurucz stellar atmosphere models. From comparison with external data sets, our conservative estimates of errors of the stellar parameters for a spectrum with an average signal-to-noise ratio (S/N) of 40 are 400 K in temperature, 0.5 dex in gravity, and 0.2 dex in metallicity. We note however that, for all three stellar parameters, the internal errors estimated from repeat RAVE observations of 855 stars are at least a factor 2 smaller. We demonstrate that the results show no systematic offsets if compared to values derived from photometry or complementary spectroscopic analyses. The data release includes proper motions from Starnet2, Tycho-2, and UCAC2 catalogs and photometric measurements from Tycho-2 USNO-B, DENIS, and 2MASS. The data release can be accessed via the RAVE Web site: http://www.rave-survey.org and through CDS

    Predicting Bison Migration out of Yellowstone National Park Using Bayesian Models

    Get PDF
    Long distance migrations by ungulate species often surpass the boundaries of preservation areas where conflicts with various publics lead to management actions that can threaten populations. We chose the partially migratory bison (Bison bison) population in Yellowstone National Park as an example of integrating science into management policies to better conserve migratory ungulates. Approximately 60% of these bison have been exposed to bovine brucellosis and thousands of migrants exiting the park boundary have been culled during the past two decades to reduce the risk of disease transmission to cattle. Data were assimilated using models representing competing hypotheses of bison migration during 1990–2009 in a hierarchal Bayesian framework. Migration differed at the scale of herds, but a single unifying logistic model was useful for predicting migrations by both herds. Migration beyond the northern park boundary was affected by herd size, accumulated snow water equivalent, and aboveground dried biomass. Migration beyond the western park boundary was less influenced by these predictors and process model performance suggested an important control on recent migrations was excluded. Simulations of migrations over the next decade suggest that allowing increased numbers of bison beyond park boundaries during severe climate conditions may be the only means of avoiding episodic, large-scale reductions to the Yellowstone bison population in the foreseeable future. This research is an example of how long distance migration dynamics can be incorporated into improved management policies

    A Functional Proteomic Method for Biomarker Discovery

    Get PDF
    The sequencing of the human genome holds out the hope for personalized medicine, but it is clear that analysis of DNA or RNA content alone is not sufficient to understand most disease processes. Proteomic strategies that allow unbiased identification of proteins and their post-transcriptional and -translation modifications are an essential complement to genomic strategies. However, the enormity of the proteome and limitations in proteomic methods make it difficult to determine the targets that are particularly relevant to human disease. Methods are therefore needed that allow rational identification of targets based on function and relevance to disease. Screening methodologies such as phage display, SELEX, and small-molecule combinatorial chemistry have been widely used to discover specific ligands for cells or tissues of interest, such as tumors. Those ligands can be used in turn as affinity probes to identify their cognate molecular targets when they are not known in advance. Here we report an easy, robust and generally applicable approach in which phage particles bearing cell- or tissue-specific peptides serve directly as the affinity probes for their molecular targets. For proof of principle, the method successfully identified molecular binding partners, three of them novel, for 15 peptides specific for pancreatic cancer

    Mucin Variable Number Tandem Repeat Polymorphisms and Severity of Cystic Fibrosis Lung Disease: Significant Association with MUC5AC

    Get PDF
    Variability in cystic fibrosis (CF) lung disease is partially due to non-CFTR genetic modifiers. Mucin genes are very polymorphic, and mucins play a key role in the pathogenesis of CF lung disease; therefore, mucin genes are strong candidates as genetic modifiers. DNA from CF patients recruited for extremes of lung phenotype was analyzed by Southern blot or PCR to define variable number tandem repeat (VNTR) length polymorphisms for MUC1, MUC2, MUC5AC, and MUC7. VNTR length polymorphisms were tested for association with lung disease severity and for linkage disequilibrium (LD) with flanking single nucleotide polymorphisms (SNPs). No strong associations were found for MUC1, MUC2, or MUC7. A significant association was found between the overall distribution of MUC5AC VNTR length and CF lung disease severity (p = 0.025; n = 468 patients); plus, there was robust association of the specific 6.4 kb HinfI VNTR fragment with severity of lung disease (p = 6.2 x 10(-4) after Bonferroni correction). There was strong LD between MUC5AC VNTR length modes and flanking SNPs. The severity-associated 6.4 kb VNTR allele of MUC5AC was confirmed to be genetically distinct from the 6.3 kb allele, as it showed significantly stronger association with nearby SNPs. These data provide detailed respiratory mucin gene VNTR allele distributions in CF patients. Our data also show a novel link between the MUC5AC 6.4 kb VNTR allele and severity of CF lung disease. The LD pattern with surrounding SNPs suggests that the 6.4 kb allele contains, or is linked to, important functional genetic variation

    Phosphorylation controls autoinhibition of cytoplasmic linker protein-170

    Get PDF
    Author Posting. © American Society for Cell Biology, 2010. This article is posted here by permission of American Society for Cell Biology for personal use, not for redistribution. The definitive version was published in Molecular Biology of the Cell 21 (2010): 2661-2673, doi:10.1091/mbc.E09-12-1036.Cytoplasmic linker protein (CLIP)-170 is a microtubule (MT) plus-end-tracking protein that regulates MT dynamics and links MT plus ends to different intracellular structures. We have shown previously that intramolecular association between the N and C termini results in autoinhibition of CLIP-170, thus altering its binding to MTs and the dynactin subunit p150Glued (J. Cell Biol. 2004: 166, 1003–1014). In this study, we demonstrate that conformational changes in CLIP-170 are regulated by phosphorylation that enhances the affinity between the N- and C-terminal domains. By using site-directed mutagenesis and phosphoproteomic analysis, we mapped the phosphorylation sites in the third serine-rich region of CLIP-170. A phosphorylation-deficient mutant of CLIP-170 displays an "open" conformation and a higher binding affinity for growing MT ends and p150Glued as compared with nonmutated protein, whereas a phosphomimetic mutant confined to the "folded back" conformation shows decreased MT association and does not interact with p150Glued. We conclude that phosphorylation regulates CLIP-170 conformational changes resulting in its autoinhibition.This work was supported by National Institutes of Health grant GM-25062 (to G.G.B.); Netherlands Organization for Scientific Research grants (to A. A. and N. G.); a Cancer Genomics Centre grant (to J.v.H.); and Presidential Program of Russian Academy of Sciences and RFBP grant 05-04-4915 (to E.S.N.)

    Global Position Statement: Religion and Spirituality in Mental Health Care

    Get PDF
    Careif is an international mental health charity that works towards protecting and promoting mental health and resilience, to eliminate inequalities and strengthen social justice. Our principles include working creatively with humility and dignity, and with balanced partnerships in order to ensure all cultures and societies play their part in our mission of protecting and promoting mental health and wellbeing. We do this by respecting the traditions of all world societies, whilst believing traditions can evolve, for even greater benefit to individuals and society. Careif believes that knowledge should not only be available to those with wealth or those who live in urban and industrialised parts of the world. It considers knowledge sharing to be a basic human right, particularly where this knowledge can change lives and help realise true human potential. Furthermore, there is substantial knowledge to be found in low and middle income countries and within rural and poorer areas of the world and this knowledge is just as valuable to the wellbeing of people in areas which are wealthier. This Position Statement aims to highlight the current position and need for understanding the role of culture, spirituality and religion in the diagnosis and treatment of mental illness. Globalisation has created culturally rich and diverse societies. During the past several decades, there has been a steadily increasing recognition of the importance of cultural influences on life and health. Societies are becoming multi-ethnic and poly-cultural in nature worldwide, where different groups enrich each other's lives with their unique culture/s. Cultural transition and acculturation is often discussed as relevant to migrants and the need to integrate, when in fact it is of relevance to all cultures in an ever-interconnected world. It is indeed necessary to be equipped with knowledge about cultures and their influence on mental health and illness. Until the early 19th century, psychiatry and religion were closely connected. Religious institutions were responsible for the care of the mentally ill. A major change occurred when Charcot and his pupil Freud associated religion with hysteria and neurosis. This created a divide between religion and mental health care, which has continued until recently. Psychiatry has a long tradition of dismissing and attacking religious experience. Religion has often been seen by mental health professionals in Western societies as irrational, outdated, and dependency forming and has sometimes been viewed as resulting in emotional instability

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 60∘60^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law E−γE^{-\gamma} with index Îł=2.70±0.02 (stat)±0.1 (sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25 (stat)−1.2+1.0 (sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO
    • 

    corecore