297 research outputs found

    Distribution of chirality in the quantum walk: Markov process and entanglement

    Full text link
    The asymptotic behavior of the quantum walk on the line is investigated focusing on the probability distribution of chirality independently of position. The long-time limit of this distribution is shown to exist and to depend on the initial conditions, and it also determines the asymptotic value of the entanglement between the coin and the position. It is shown that for given asymptotic values of both the entanglement and the chirality distribution it is possible to find the corresponding initial conditions within a particular class of spatially extended Gaussian distributions. Moreover it is shown that the entanglement also measures the degree of Markovian randomness of the distribution of chirality.Comment: 5 pages, 3 figures, It was accepted in Physcial Review

    PLUTONIA/CURIA COMPATIBILITY TESTING. Quarterly Report No. 9, October-- December 1970.

    Full text link

    The Design of an Output Data Collection Framework for ns-3

    Get PDF
    An important design decision in the construction of a simulator is how to enable users to access the data generated in each run of a simulation experiment. As the simulator executes, the samples of performance metrics that are generated beg to be exposed either in their raw state or after having undergone mathematical processing. Also of concern is the particular format this data assumes when externalized to mass storage, since it determines the ease of processing by other applications or interpretation by the user. In this paper, we present a framework for the \ns network simulator for capturing data from inside an experiment, subjecting it to mathematical transformations, and ultimately marshaling it into various output formats. The application of this functionality is illustrated and analyzed via a study of common use cases. Although the implementation of our approach is specific to \ns, this design presents lessons transferrable to other platforms

    Efficient estimation of nearly sparse many-body quantum Hamiltonians

    Full text link
    We develop an efficient and robust approach to Hamiltonian identification for multipartite quantum systems based on the method of compressed sensing. This work demonstrates that with only O(s log(d)) experimental configurations, consisting of random local preparations and measurements, one can estimate the Hamiltonian of a d-dimensional system, provided that the Hamiltonian is nearly s-sparse in a known basis. We numerically simulate the performance of this algorithm for three- and four-body interactions in spin-coupled quantum dots and atoms in optical lattices. Furthermore, we apply the algorithm to characterize Hamiltonian fine structure and unknown system-bath interactions.Comment: 8 pages, 2 figures. Title is changed. Detailed error analysis is added. Figures are updated with additional clarifying discussion

    Quantum computation with devices whose contents are never read

    Full text link
    In classical computation, a "write-only memory" (WOM) is little more than an oxymoron, and the addition of WOM to a (deterministic or probabilistic) classical computer brings no advantage. We prove that quantum computers that are augmented with WOM can solve problems that neither a classical computer with WOM nor a quantum computer without WOM can solve, when all other resource bounds are equal. We focus on realtime quantum finite automata, and examine the increase in their power effected by the addition of WOMs with different access modes and capacities. Some problems that are unsolvable by two-way probabilistic Turing machines using sublogarithmic amounts of read/write memory are shown to be solvable by these enhanced automata.Comment: 32 pages, a preliminary version of this work was presented in the 9th International Conference on Unconventional Computation (UC2010

    Quantum Interactive Proofs with Competing Provers

    Full text link
    This paper studies quantum refereed games, which are quantum interactive proof systems with two competing provers: one that tries to convince the verifier to accept and the other that tries to convince the verifier to reject. We prove that every language having an ordinary quantum interactive proof system also has a quantum refereed game in which the verifier exchanges just one round of messages with each prover. A key part of our proof is the fact that there exists a single quantum measurement that reliably distinguishes between mixed states chosen arbitrarily from disjoint convex sets having large minimal trace distance from one another. We also show how to reduce the probability of error for some classes of quantum refereed games.Comment: 13 pages, to appear in STACS 200

    A Full Characterization of Quantum Advice

    Get PDF
    We prove the following surprising result: given any quantum state rho on n qubits, there exists a local Hamiltonian H on poly(n) qubits (e.g., a sum of two-qubit interactions), such that any ground state of H can be used to simulate rho on all quantum circuits of fixed polynomial size. In terms of complexity classes, this implies that BQP/qpoly is contained in QMA/poly, which supersedes the previous result of Aaronson that BQP/qpoly is contained in PP/poly. Indeed, we can exactly characterize quantum advice, as equivalent in power to untrusted quantum advice combined with trusted classical advice. Proving our main result requires combining a large number of previous tools -- including a result of Alon et al. on learning of real-valued concept classes, a result of Aaronson on the learnability of quantum states, and a result of Aharonov and Regev on "QMA+ super-verifiers" -- and also creating some new ones. The main new tool is a so-called majority-certificates lemma, which is closely related to boosting in machine learning, and which seems likely to find independent applications. In its simplest version, this lemma says the following. Given any set S of Boolean functions on n variables, any function f in S can be expressed as the pointwise majority of m=O(n) functions f1,...,fm in S, such that each fi is the unique function in S compatible with O(log|S|) input/output constraints.Comment: We fixed two significant issues: 1. The definition of YQP machines needed to be changed to preserve our results. The revised definition is more natural and has the same intuitive interpretation. 2. We needed properties of Local Hamiltonian reductions going beyond those proved in previous works (whose results we'd misstated). We now prove the needed properties. See p. 6 for more on both point

    Green function approach for scattering quantum walks

    Full text link
    In this work a Green function approach for scattering quantum walks is developed. The exact formula has the form of a sum over paths and always can be cast into a closed analytic expression for arbitrary topologies and position dependent quantum amplitudes. By introducing the step and path operators, it is shown how to extract any information about the system from the Green function. The method relevant features are demonstrated by discussing in details an example, a general diamond-shaped graph.Comment: 13 pages, 6 figures, this article was selected by APS for Virtual Journal of Quantum Information, Vol 11, Iss 11 (2011

    Optimal networks for Quantum Metrology: semidefinite programs and product rules

    Full text link
    We investigate the optimal estimation of a quantum process that can possibly consist of multiple time steps. The estimation is implemented by a quantum network that interacts with the process by sending an input and processing the output at each time step. We formulate the search of the optimal network as a semidefinite program and use duality theory to give an alternative expression for the maximum payoff achieved by estimation. Combining this formulation with a technique devised by Mittal and Szegedy we prove a general product rule for the joint estimation of independent processes, stating that the optimal joint estimation can achieved by estimating each process independently, whenever the figure of merit is of a product form. We illustrate the result in several examples and exhibit counterexamples showing that the optimal joint network may not be the product of the optimal individual networks if the processes are not independent or if the figure of merit is not of the product form. In particular, we show that entanglement can reduce by a factor K the variance in the estimation of the sum of K independent phase shifts.Comment: 19 pages, no figures, published versio

    Ground states of unfrustrated spin Hamiltonians satisfy an area law

    Full text link
    We show that ground states of unfrustrated quantum spin-1/2 systems on general lattices satisfy an entanglement area law, provided that the Hamiltonian can be decomposed into nearest-neighbor interaction terms which have entangled excited states. The ground state manifold can be efficiently described as the image of a low-dimensional subspace of low Schmidt measure, under an efficiently contractible tree-tensor network. This structure gives rise to the possibility of efficiently simulating the complete ground space (which is in general degenerate). We briefly discuss "non-generic" cases, including highly degenerate interactions with product eigenbases, using a relationship to percolation theory. We finally assess the possibility of using such tree tensor networks to simulate almost frustration-free spin models.Comment: 14 pages, 4 figures, small corrections, added a referenc
    corecore