22 research outputs found

    770-5 Chamber Specific Regulation of the Sarcoplasmic Reticulum Calcium ATPase Pump In Human Heart Failure

    Get PDF
    Alterations in the expression of Ca2+ channels have been described in failing human left ventricle, including down regulation of the ryanodine receptor (RyR)/Ca2+ release channel and the sarcoplasmic reticulum Ca2+ ATPase pump (SERCA) which are involved in excitation-contraction coupling and relaxation (Cir Res 71: 18, 1992). We previously reported chamber specific regulation of the RyR during end-stage human heart failure (Clin Res 42(2):166A. 1994). We investigated whether SERCA is also regulated in the other cardiac chambers during human heart failure. Total RNA and protein homogenates were isolated from the left and right atria (LA, RA) and left and right ventricles (LV, RV) obtained prospectively from 32 cardiac transplant patients and 4 normal controls. Messenger RNA (mRNA) levels of SERCA were quantified using Northern and slot blot hybridizations with a 1.6kb rat cardiac SERCA cDNA probe and normalized to 28S ribosomal levels. Protein levels of SERCA were quantified using enzyme-linked immunosorbent assays with monoclonal antibodies directed against dog cardiac SERCA. Northern analyses detected a single ≈4 kb mRNA in all regions. Compared to controls. SERCA mRNA expression in failing hearts was decreased in LV by 39% (p<0.005), unchanged in RV, and increased in LA by 255% (p<0.005) and in RA by 338% (p<0.025). Consistent with the mRNA data. immunodetectable levels of SERCA were also reduced in LV by 30% (p<0.05) and unchanged in RV; however, protein levels appeared unchanged or reduced in both atria in contrast to the mRNA. This is the first study reporting simultaneous measurements of SERCA mRNA and protein levels in the human heart. We conclude that chamber specific regulation of SERCA mRNA occurs during end-stage heart failure. corroborated by protein expression in the ventricles. Down regulations of SERCA may contribute to impaired relaxation and increased diastolic tone during heart failure

    Mercury flux to sediments of Lake Tahoe, California-Nevada

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Water, Air, & Soil Pollution 210 (2010): 399-407, doi:10.1007/s11270-009-0262-y.We report estimates of mercury (Hg) flux to the sediments of Lake Tahoe, California-Nevada: 2 and 15-20 µg/m2/yr in preindustrial and modern sediments, respectively. These values result in a modern to preindustrial flux ratio of 7.5-10, which is similar to flux ratios recently reported for other alpine lakes in California, and greater than the value of 3 typically seen worldwide. We offer plausible hypotheses to explain the high flux ratios, including (1) proportionally less photoreduction and evasion of Hg with the onset of cultural eutrophication and (2) a combination of enhanced regional oxidation of gaseous elemental Hg and transport of the resulting reactive gaseous Hg to the surface with nightly downslope flows of air. If either of these mechanisms is correct, it could lead to local/regional solutions to lessen the impact of globally increasing anthropogenic emissions of Hg on Lake Tahoe and other alpine ecosystems.Funding was provided by Miami University, EPA-STAR, the Postdoctoral Scholar Program at Woods Hole Oceanographic Institution, and the USGS

    Monitoring the water balance of seepage lakes to track regional responses to an evolving climate

    No full text
    Understanding the causes of large fluctuations in lake water levels is important for adaptive resource management. The relatively simple water budgets of small seepage lakes make them potentially useful model systems, provided that key water balance components can be well constrained. Here, spatial variability in measured rates of evaporation (E) and precipitation (P) at the whole lake scale was investigated, and the effect on daily and seasonal water balance estimates was quantified. To estimate spatial variability, triplicate sensor platforms were deployed on and near an 18 ha seepage lake. Lake stage (S) was monitored at a single node in the lake. The water balance was closed by estimating net groundwater seepage (Gnet) analytically as Gnet = ∆S – (P – E). Instrumentation on a second seepage lake was maintained by citizen scientists to assess the potential for more widespread sensor deployments. Data were collected every 30-minutes for six months. The results indicate that low-cost sensor networks with single nodes to measure E, P and ∆S provide well-constrained water budgets at daily and seasonal time scales.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
    corecore