1,004 research outputs found

    The Performance of Natural Ventilation In A Dance Studio – Lessons From Tracer Gas Measurements And Control Integration

    Get PDF
    The naturally ventilated, three storey School of Arts Jarman Building provides two dance studios, an exhibition gallery, teaching rooms, video editing suites and offices. The main dance studio is double-height, has underfloor heating and accommodates sixty people. Fresh air enters from low level perimeter louvres and exits at high level through a stack that rises through the third storey to a stack terminal with motorized louvres. Tracer gas (CO2) measurements were used to measure the ventilation rate in conjunction with hot-wire anemometry in the stack tower. The results showed that when all air inlet and exit louvres were set to closed, the residual air flow up the stack was 0.33m3/s representing a potential heat loss of 9kW in winter at 0°C outside. When the louvres were all open, the air flow increased to between 0.49 and 0.62m3/s, a level consistent with the studio’s design occupancy. It was found that the studio’s 4m high perimeter curtains represent a barrier to fresh air entering the main room space and cause the incoming air to migrate upwards towards the stack exit and effectively bypass the central part of the studio. Tracer gas decay rates showed that the main space experienced an air exchange rate 50% less than that for the overall studio. An investigation of the controls also revealed that the underfloor heating system operated independently of the control of the stack ventilation system, leading to simultaneous heating and venting. The research shows the vital importance of prescribing contractually that key controls are integrated, that fresh air dampers are well-sealed when closed, and the importance of designing a fresh air supply that matches the way a space is used

    Optimal Moments for the Analysis of Peculiar Velocity Surveys

    Get PDF
    We present a new method for the analysis of peculiar velocity surveys which removes contributions to velocities from small scale, nonlinear velocity modes while retaining information about large scale motions. Our method utilizes Karhunen--Lo\`eve methods of data compression to construct a set of moments out of the velocities which are minimally sensitive to small scale power. The set of moments are then used in a likelihood analysis. We develop criteria for the selection of moments, as well as a statistic to quantify the overall sensitivity of a set of moments to small scale power. Although we discuss our method in the context of peculiar velocity surveys, it may also prove useful in other situations where data filtering is required.Comment: 25 Pages, 3 figures. Submitted to Ap

    Sealing Glasses for Titanium and Titanium Alloys

    Get PDF
    Glass compositions containing calcium oxide, alumina, boric oxide, strontium oxide and barium oxide in various mole % combinations were studied. These compositions are capable of forming stable glass to metal seals with titanium and titanium alloys for use as seals for battery headers

    Bulk Flow and Shear Moments of the SFI++ Survey

    Full text link
    We find the nine bulk--flow and shear moments from the SFI++ survey, as well as for subsamples of group and field galaxies. We constrain the velocity power spectrum shape parameter Γ\Gamma in linear theory using these moments. A likelihood function for Γ\Gamma was found after marginalizing over the power spectrum amplitude σ8Ωm0.6\sigma_8\Omega_m^{0.6} using constraints obtained from comparisons between redshift surveys and peculiar velocity data. We have estimated the velocity noise σ\sigma_* from the data since without it our results may be biased. We also performed a statistical analysis of the difference between the field and group catalogues and found that the results from each reflect the same underlying large scale flows. We found that we can constrain the power spectrum shape parameter to be Γ=0.150.08+0.18\Gamma=0.15^{+0.18}_{-0.08} for the groups catalogue and Γ=0.090.04+0.04\Gamma=0.09^{+0.04}_{-0.04} for the field galaxy catalogue in fair agreement with the value from WMAP

    Compact High Current Rare-Earth Emitter Hollow Cathode for Hall Effect Thrusters

    Get PDF
    An apparatus and method for achieving an efficient central cathode in a Hall effect thruster is disclosed. A hollow insert disposed inside the end of a hollow conductive cathode comprises a rare-earth element and energized to emit electrons from an inner surface. The cathode employs an end opening having an area at least as large as the internal cross sectional area of the rare earth insert to enhance throughput from the cathode end. In addition, the cathode employs a high aspect ratio geometry based on the cathode length to width which mitigates heat transfer from the end. A gas flow through the cathode and insert may be impinged by the emitted electrons to yield a plasma. One or more optional auxiliary gas feeds may also be employed between the cathode and keeper wall and external to the keeper near the outlet

    A New Approach to Probing Large Scale Power with Peculiar Velocities

    Get PDF
    We propose a new strategy to probe the power spectrum on large scales using galaxy peculiar velocities. We explore the properties of surveys that cover only two small fields in opposing directions on the sky. Surveys of this type have several advantages over those that attempt to cover the entire sky; in particular, by concentrating galaxies in narrow cones these surveys are able to achieve the density needed to measure several moments of the velocity field with only a modest number of objects, even for surveys designed to probe scales \gtwid 100\hmpc. We construct mock surveys with this geometry and analyze them in terms of the three moments to which they are most sensitive. We calculate window functions for these moments and construct a χ2\chi^2 statistic which can be used to put constraints on the power spectrum. In order to explore the sensitivity of these surveys, we calculate the expectation values of the moments and their associated measurement noise as a function of the survey parameters such as density and depth and for several popular models of structure formation. In addition, we have studied how well these kind of surveys can distinguish between different power spectra and found that, for the same number of objects, cone surveys are as good or better than full-sky surveys in distinguishing between popular cosmological models. We find that a survey with 200300200-300 galaxy peculiar velocities with distance errors of 15% in two cones with opening angle of 10\sim 10^\circ could put significant constraints on the power spectrum on scales of 100300100-300\hmpc, where few other constraints exist.Comment: 15 pages, 3 figures, Some revisions and different figure. Accepted for publication at ApJ letter

    Hubble flow variance and the cosmic rest frame

    Get PDF
    We characterize the radial and angular variance of the Hubble flow in the COMPOSITE sample of 4534 galaxies, on scales in which much of the flow is in the nonlinear regime. With no cosmological assumptions other than the existence of a suitably averaged linear Hubble law, we find with decisive Bayesian evidence (ln B >> 5) that the Hubble constant averaged in independent spherical radial shells is closer to its asymptotic value when referred to the rest frame of the Local Group, rather than the standard rest frame of the Cosmic Microwave Background. An exception occurs for radial shells in the range 40/h-60/h Mpc. Angular averages reveal a dipole structure in the Hubble flow, whose amplitude changes markedly over the range 32/h-62/h Mpc. Whereas the LG frame dipole is initially constant and then decreases significantly, the CMB frame dipole initially decreases but then increases. The map of angular Hubble flow variation in the LG rest frame is found to coincide with that of the residual CMB temperature dipole, with correlation coefficient -0.92. These results are difficult to reconcile with the standard kinematic interpretation of the motion of the Local Group in response to the clustering dipole, but are consistent with a foreground non-kinematic anisotropy in the distance-redshift relation of 0.5% on scales up to 65/h Mpc. Effectively, the differential expansion of space produced by nearby nonlinear structures of local voids and denser walls and filaments cannot be reduced to a local boost. This hypothesis suggests a reinterpretation of bulk flows, which may potentially impact on calibration of supernovae distances, anomalies associated with large angles in the CMB anisotropy spectrum, and the dark flow inferred from the kinematic Sunyaev-Zel'dovich effect. It is consistent with recent studies that find evidence for a non-kinematic dipole in the distribution of distant radio sources.Comment: 37 pages, 9 tables, 13 figures; v2 adds extensive new analysis (including additional subsections, tables, figures); v3 adds a Monte Carlo analysis (with additional table, figure) which further tightens the statistical robustness of the dipole results; v4 adds further clarifications, small corrections, references and discussion of Planck satellite results; v5 typos fixed, matches published versio

    Current trends in the treatment of pneumonia due to multidrug-resistant Gram-negative bacteria [version 1; referees: 2 approved]

    Get PDF
    Pneumonia is one of the most common infections worldwide. Morbidity, mortality, and healthcare costs increase substantially when pneumonia is caused by multidrug-resistant Gram-negative bacteria (MDR-GNB). The ongoing spread of antimicrobial resistance has made treating MDR-GNB pneumonia increasingly difficult. Fortunately, there have been some recent additions to our antibiotic armamentarium in the US and Europe for MDR-GNB, along with several agents that are in advanced stages of development. In this article, we review the risk factors for and current management of MDR-GNB pneumonia as well as novel agents with activity against these important and challenging pathogens

    Current trends in the treatment of pneumonia due to multidrug-resistant Gram-negative bacteria [version 2; referees: 2 approved]

    Get PDF
    Pneumonia is one of the most common infections worldwide. Morbidity, mortality, and healthcare costs increase substantially when pneumonia is caused by multidrug-resistant Gram-negative bacteria (MDR-GNB). The ongoing spread of antimicrobial resistance has made treating MDR-GNB pneumonia increasingly difficult. Fortunately, there have been some recent additions to our antibiotic armamentarium in the US and Europe for MDR-GNB, along with several agents that are in advanced stages of development. In this article, we review the risk factors for and current management of MDR-GNB pneumonia as well as novel agents with activity against these important and challenging pathogens
    corecore