167 research outputs found
Netrin-3 and Netrin-4-Like Proteins are Secreted from \u3cem\u3eTetrahymena thermophila\u3c/em\u3e
Netrins are signaling proteins, acting as chemorepellants or chemoattractants, and their role is especially important in early growth in organisms. In studies involving Tetrahymena thermophila, netrin proteins often act as chemorepellants, so research centered around verifying if this was also true for Netrin-4 protein. Since Netrin-1 and Netrin-3 have been shown to influence neurological and developmental growth in organisms, the implications for discovering the cellular effects of Netrin-4 are significant for human health and research. Through behavioral assays, we were able to confirm that Netrin4 does act as a chemorepellant. In addition, our ELISA and Western blots also helped substantiate the idea that Tetrahymena produce Netrin-4 for physiological functions, as they possess receptors for these proteins. The exact purposes of Netrin-4 for this organism is unknown up to this point, so further testing is needed to determine the cellular mechanisms with which Netrin-4 is involved
Determination of the Cosmic Distance Scale from Sunyaev-Zel'dovich Effect and Chandra X-ray Measurements of High Redshift Galaxy Clusters
We determine the distance to 38 clusters of galaxies in the redshift range
0.14 < z < 0.89 using X-ray data from Chandra and Sunyaev-Zeldovich Effect data
from the Owens Valley Radio Observatory and the Berkeley-Illinois-Maryland
Association interferometric arrays. The cluster plasma and dark matter
distributions are analyzed using a hydrostatic equilibrium model that accounts
for radial variations in density, temperature and abundance, and the
statistical and systematic errors of this method are quantified. The analysis
is performed via a Markov chain Monte Carlo technique that provides
simultaneous estimation of all model parameters. We measure a Hubble constant
of 76.9 +3.9-3.4 +10.0-8.0 km/s/Mpc (statistical followed by systematic
uncertainty at 68% confidence) for an Omega_M=0.3, Omega_Lambda=0.7 cosmology.
We also analyze the data using an isothermal beta model that does not invoke
the hydrostatic equilibrium assumption, and find H_0=73.7 +4.6-3.8 +9.5-7.6
km/s/Mpc; to avoid effects from cool cores in clusters, we repeated this
analysis excluding the central 100 kpc from the X-ray data, and find H_0=77.6
+4.8-4.3 +10.1-8.2 km/s/Mpc. The consistency between the models illustrates the
relative insensitivity of SZE/X-ray determinations of H_0 to the details of the
cluster model. Our determination of the Hubble parameter in the distant
universe agrees with the recent measurement from the Hubble Space Telescope key
project that probes the nearby universe.Comment: ApJ submitted (revised version
X-ray and Sunyaev-Zel'dovich Effect Measurements of the Gas Mass Fraction in Galaxy Clusters
We present gas mass fractions of 38 massive galaxy clusters spanning
redshifts from 0.14 to 0.89, derived from Chandra X-ray data and OVRO/BIMA
interferometric Sunyaev-Zel'dovich Effect measurements. We use three models for
the gas distribution: (1) an isothermal beta-model fit jointly to the X-ray
data at radii beyond 100 kpc and to all of the SZE data,(2) a non-isothermal
double beta-model fit jointly to all of the X-ray and SZE data, and (3) an
isothermal beta-model fit only to the SZE spatial data. We show that the simple
isothermal model well characterizes the intracluster medium (ICM) outside of
the cluster core in clusters with a wide range of morphological properties. The
X-ray and SZE determinations of mean gas mass fractions for the 100 kpc-cut
isothermal beta-model are fgas(X-ray)=0.110 +0.003-0.003 +0.006-0.018 and
fgas(SZE)=0.116 +0.005-0.005 +0.009-0.026, where uncertainties are statistical
followed by systematic at 68% confidence. For the non-isothermal double
beta-model, fgas(X-ray)=0.119 +0.003-0.003 +0.007-0.014 and fgas(SZE)=0.121
+0.005-0.005 +0.009-0.016. For the SZE-only model, fgas(SZE)=0.120 +0.009-0.009
+0.009-0.027. Our results indicate that the ratio of the gas mass fraction
within r2500 to the cosmic baryon fraction is 0.68 +0.10-0.16 where the range
includes statistical and systematic uncertainties. By assuming that cluster gas
mass fractions are independent of redshift, we find that the results are in
agreement with standard LambdaCDM cosmology and are inconsistent with a flat
matter dominated universe.Comment: ApJ, submitted. 47 pages, 5 figures, 8 table
Sexual Satisfaction and the Importance of Sexual Health to Quality of Life Throughout the Life Course of U.S. Adults
Discussions about sexual health are uncommon in clinical encounters, despite the sexual dysfunction associated with many common health conditions. Understanding of the importance of sexual health and sexual satisfaction among US adults is limited
Determining the Cosmic Distance Scale from Interferometric Measurements of the Sunyaev-Zel'dovich Effect
We determine the distances to 18 galaxy clusters with redshifts ranging from
z~0.14 to z~0.78 from a maximum likelihood joint analysis of 30 GHz
interferometric Sunyaev-Zel'dovich effect (SZE) and X-ray observations. We
model the intracluster medium (ICM) using a spherical isothermal beta model. We
quantify the statistical and systematic uncertainties inherent to these direct
distance measurements, and we determine constraints on the Hubble parameter for
three different cosmologies. These distances imply a Hubble constant of 60 (+4,
-4) (+13, -18) km s-1 Mpc-1 for an Omega_M = 0.3, Omega_Lambda = 0.7 cosmology,
where the uncertainties correspond to statistical followed by systematic at 68%
confidence. With a sample of 18 clusters, systematic uncertainties clearly
dominate. The systematics are observationally approachable and will be
addressed in the coming years through the current generation of X-ray
satellites (Chandra & XMM-Newton) and radio observatories (OVRO, BIMA, & VLA).
Analysis of high redshift clusters detected in future SZE and X-ray surveys
will allow a determination of the geometry of the universe from SZE determined
distances.Comment: ApJ Submitted; 40 pages, 9 figures (fig 3 B&W for size constraint),
13 tables, uses emulateapj5 styl
Joint analysis of X-ray and Sunyaev Zel'dovich observations of galaxy clusters using an analytic model of the intra-cluster medium
We perform a joint analysis of X-ray and Sunyaev Zel'dovich (SZ) effect data
using an analytic model that describes the gas properties of galaxy clusters.
The joint analysis allows the measurement of the cluster gas mass fraction
profile and Hubble constant independent of cosmological parameters. Weak
cosmological priors are used to calculate the overdensity radius within which
the gas mass fractions are reported. Such an analysis can provide direct
constraints on the evolution of the cluster gas mass fraction with redshift. We
validate the model and the joint analysis on high signal-to-noise data from the
Chandra X-ray Observatory and the Sunyaev-Zel'dovich Array for two clusters,
Abell 2631 and Abell 2204.Comment: ApJ in pres
Development of the NIH PROMIS® Sexual Function and Satisfaction Measures in Patients with Cancer
We describe the development and validation of the PROMIS Sexual Function and Satisfaction (PROMIS SexFS) measures version 1.0 for cancer populations
- …