34 research outputs found

    The Canadian Experience With Foreign Direct Investment

    Get PDF

    Skewed genomic variability in strains of the toxigenic bacterial pathogen, Clostridium perfringens

    Full text link
    Clostridium perfringens is a Gram-positive, anaerobic spore-forming bacterium commonly found in soil, sediments, and the human gastrointestinal tract. C. perfringens is responsible for a wide spectrum of disease, including food poisoning, gas gangrene (clostridial myonecrosis), enteritis necroticans, and non-foodborne gastrointestinal infections. The complete genome sequences of Clostridium perfringens strain ATCC 13124, a gas gangrene isolate and the species type strain, and the enterotoxin-producing food poisoning strain SM101, were determined and compared with the published C. perfringens strain 13 genome. Comparison of the three genomes revealed considerable genomic diversity with >300 unique "genomic islands" identified, with the majority of these islands unusually clustered on one replichore. PCR-based analysis indicated that the large genomic islands are widely variable across a large collection of C. perfringens strains. These islands encode genes that correlate to differences in virulence and phenotypic characteristics of these strains. Significant differences between the strains include numerous novel mobile elements and genes encoding metabolic capabilities, strain-specific extracellular polysaccharide capsule, sporulation factors, toxins, and other secreted enzymes, providing substantial insight into this medically important bacterial pathogen. ©2006 by Cold Spring Harbor Laboratory Press

    The Resource Curse and Rentier States in the Caspian Region : A Need for Context Analysis

    Get PDF
    Although much attention is paid to the Caspian region with regard to energy issues, the domestic consequences of the region’s resource production have so far constituted a neglected field of research. A systematic survey of the latest research trends in the economic and political causalities of the resource curse and of rentier states reveals that there is a need for context analysis. In reference to this, the paper traces any shortcomings and promising approaches in the existent body of literature on the Caspian region. Following on from this, the paper then proposes a new approach; specifically, one in which any differences and similarities in the context conditions are captured. This enables a more precise exploration of the exact ways in which they form contemporary post-Soviet Caspian rentier states.Obwohl der Region am Kaspischen Meer im Zuge von Energiediskursen große Aufmerksamkeit zuteil wird, stellen die innerstaatlichen Folgen der Ressourcenproduktion in der Region ein bislang vernachlässigtes Forschungsfeld dar. Ein systematischer Überblick über die jüngsten Forschungstrends zu wirtschaftlichen und politischen Kausalzusammenhängen des Ressourcenfluchs und zu Rentierstaaten offenbart die Notwendigkeit von Kontextanalysen. Hierauf Bezug nehmend, analysiert der Aufsatz sowohl die Mängel als auch viel versprechende Ansätze in der betreffenden Literatur zur Region am Kaspischen Meer. Der Aufsatz stellt letztendlich einen neuen Ansatz vor, der Unterschiede und Gemeinsamkeiten in den Kontextbedingungen erfasst, um zu erforschen, wie diese die gegenwärtigen post-sowjetischen Rentierstaaten in der Region am Kaspischen Meer tatsächlich prägen

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    The Resource Curse and Rentier States in the Caspian Region: A Need for Context Analysis

    Full text link
    corecore