131 research outputs found

    A double-label study of efferent projections from the Edinger-Westphal nucleus in goldfish and kelp bass

    Get PDF
    The Edinger-Westphal nucleus in goldfish was identified by retrograde labeling from the ciliary ganglion. In the same animals a few neurons near this nucleus (perinuclear Edinger-Westphal neurons) were labeled by a different retrograde tracer injected into the cerebellum. No double-labeled cells were found. Similar results were obtained in kelp bass, except that in this species no cerebellar-projecting perinuclear neurons were observed. Cerebellar-projecting Edinger-Westphal neurons have previously been described in some mammals, but not in other vertebrates. Therefore the homology of cerebellar-projecting cells of the Edinger-Westphal region in mammals and teleost fishes is doubtful

    Relationship break-up after having a baby : exploring why men leave : a thesis presented in partial fulfilment of the requirements for the degree of Master of Social Work at Massey University, New Zealand

    Get PDF
    Fatherhood can be one of the most rewarding things a man can experience in life. Nevertheless, are today's men fully prepared for this occasion? Understanding the challenges men potentially face during the pregnancy and postpartum stage contributes to the support of men's mental health, the journey into fatherhood, children, future parents, policies and the agencies that work within these areas. This research explored relationship breakdown following the birth of a child. A qualitative method was used, and five male participants were interviewed. Challenges men are experiencing during the pregnancy and the postpartum stage were identified, and the required support was noted. This study's findings indicated that some men are better prepared for fatherhood than others and that fathers are more involved than is often recognised with the childbirth process right from the beginning. Further, that some men go through mental health conditions during the pregnancy and at the postpartum stage, and some - at the point of finding out they are fathers - feel suddenly unprepared for the changes and the expectations. Five main themes and key recommendations emerged from this research. They included: (1) training, (2) future research, (3) antenatal classes, (4) policies, and (5) education. These recommendations are highlighted to support prospective fathers into their journey with fatherhood and parenthood

    Guitarfish possess ipsilateral as well as contralateral retinofugal projections

    Full text link
    Autoradiographic analysis of the primary retinal projections in the thornback guitarfish reveals both contralateral and ipsilateral projections to diencephalic, pretectal, and tegmental nuclei and the optic tectum. A total of 12 retino-recipient cell groups receive ipsilateral as well as contralateral inputs.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/23092/1/0000010.pd

    Microwave-assisted methods for the synthesis of pentacyclo[5.4.0.02,6.03,10.05,9]undecylamines

    Get PDF
    Efficient methodologies for the preparation of pentacyclo[5..4.0.02,6.03,10.05,9]undecane (PCU) amine derivatives are described via microwave-assisted synthesis. The obtained results revealed that microwave-assisted synthetic procedures under controlled conditions (power, temperature and time) are very convenient, high yielding, efficient and low-cost methods for the preparation of PCU amine derivatives. The new methods show several advantages including operational simplicity, good performance, significant reduction in reaction time, less by-product formation and easier purification.Web of Scienc

    Auditory Spatial Acuity Approximates the Resolving Power of Space-Specific Neurons

    Get PDF
    The relationship between neuronal acuity and behavioral performance was assessed in the barn owl (Tyto alba), a nocturnal raptor renowned for its ability to localize sounds and for the topographic representation of auditory space found in the midbrain. We measured discrimination of sound-source separation using a newly developed procedure involving the habituation and recovery of the pupillary dilation response. The smallest discriminable change of source location was found to be about two times finer in azimuth than in elevation. Recordings from neurons in its midbrain space map revealed that their spatial tuning, like the spatial discrimination behavior, was also better in azimuth than in elevation by a factor of about two. Because the PDR behavioral assay is mediated by the same circuitry whether discrimination is assessed in azimuth or in elevation, this difference in vertical and horizontal acuity is likely to reflect a true difference in sensory resolution, without additional confounding effects of differences in motor performance in the two dimensions. Our results, therefore, are consistent with the hypothesis that the acuity of the midbrain space map determines auditory spatial discrimination

    Hawk Eyes II: Diurnal Raptors Differ in Head Movement Strategies When Scanning from Perches

    Get PDF
    Background Relatively little is known about the degree of inter-specific variability in visual scanning strategies in species with laterally placed eyes (e.g., birds). This is relevant because many species detect prey while perching; therefore, head movement behavior may be an indicator of prey detection rate, a central parameter in foraging models. We studied head movement strategies in three diurnal raptors belonging to the Accipitridae and Falconidae families. Methodology/Principal Findings We used behavioral recording of individuals under field and captive conditions to calculate the rate of two types of head movements and the interval between consecutive head movements. Cooper\u27s Hawks had the highest rate of regular head movements, which can facilitate tracking prey items in the visually cluttered environment they inhabit (e.g., forested habitats). On the other hand, Red-tailed Hawks showed long intervals between consecutive head movements, which is consistent with prey searching in less visually obstructed environments (e.g., open habitats) and with detecting prey movement from a distance with their central foveae. Finally, American Kestrels have the highest rates of translational head movements (vertical or frontal displacements of the head keeping the bill in the same direction), which have been associated with depth perception through motion parallax. Higher translational head movement rates may be a strategy to compensate for the reduced degree of eye movement of this species. Conclusions Cooper\u27s Hawks, Red-tailed Hawks, and American Kestrels use both regular and translational head movements, but to different extents. We conclude that these diurnal raptors have species-specific strategies to gather visual information while perching. These strategies may optimize prey search and detection with different visual systems in habitat types with different degrees of visual obstruction

    Hawk Eyes I: Diurnal Raptors Differ in Visual Fields and Degree of Eye Movement

    Get PDF
    BACKGROUND: Different strategies to search and detect prey may place specific demands on sensory modalities. We studied visual field configuration, degree of eye movement, and orbit orientation in three diurnal raptors belonging to the Accipitridae and Falconidae families. METHODOLOGY/PRINCIPAL FINDINGS: We used an ophthalmoscopic reflex technique and an integrated 3D digitizer system. We found inter-specific variation in visual field configuration and degree of eye movement, but not in orbit orientation. Red-tailed Hawks have relatively small binocular areas (∼33°) and wide blind areas (∼82°), but intermediate degree of eye movement (∼5°), which underscores the importance of lateral vision rather than binocular vision to scan for distant prey in open areas. Cooper's Hawks' have relatively wide binocular fields (∼36°), small blind areas (∼60°), and high degree of eye movement (∼8°), which may increase visual coverage and enhance prey detection in closed habitats. Additionally, we found that Cooper's Hawks can visually inspect the items held in the tip of the bill, which may facilitate food handling. American Kestrels have intermediate-sized binocular and lateral areas that may be used in prey detection at different distances through stereopsis and motion parallax; whereas the low degree eye movement (∼1°) may help stabilize the image when hovering above prey before an attack. CONCLUSIONS: We conclude that: (a) there are between-species differences in visual field configuration in these diurnal raptors; (b) these differences are consistent with prey searching strategies and degree of visual obstruction in the environment (e.g., open and closed habitats); (c) variations in the degree of eye movement between species appear associated with foraging strategies; and (d) the size of the binocular and blind areas in hawks can vary substantially due to eye movements. Inter-specific variation in visual fields and eye movements can influence behavioral strategies to visually search for and track prey while perching

    Anatomical Specializations for Nocturnality in a Critically Endangered Parrot, the Kakapo (Strigops habroptilus)

    Get PDF
    The shift from a diurnal to nocturnal lifestyle in vertebrates is generally associated with either enhanced visual sensitivity or a decreased reliance on vision. Within birds, most studies have focused on differences in the visual system across all birds with respect to nocturnality-diurnality. The critically endangered Kakapo (Strigops habroptilus), a parrot endemic to New Zealand, is an example of a species that has evolved a nocturnal lifestyle in an otherwise diurnal lineage, but nothing is known about its' visual system. Here, we provide a detailed morphological analysis of the orbits, brain, eye, and retina of the Kakapo and comparisons with other birds. Morphometric analyses revealed that the Kakapo's orbits are significantly more convergent than other parrots, suggesting an increased binocular overlap in the visual field. The Kakapo exhibits an eye shape that is consistent with other nocturnal birds, including owls and nightjars, but is also within the range of the diurnal parrots. With respect to the brain, the Kakapo has a significantly smaller optic nerve and tectofugal visual pathway. Specifically, the optic tectum, nucleus rotundus and entopallium were significantly reduced in relative size compared to other parrots. There was no apparent reduction to the thalamofugal visual pathway. Finally, the retinal morphology of the Kakapo is similar to that of both diurnal and nocturnal birds, suggesting a retina that is specialised for a crepuscular niche. Overall, this suggests that the Kakapo has enhanced light sensitivity, poor visual acuity and a larger binocular field than other parrots. We conclude that the Kakapo possesses a visual system unlike that of either strictly nocturnal or diurnal birds and therefore does not adhere to the traditional view of the evolution of nocturnality in birds

    Understanding the retinal basis of vision across species

    Get PDF
    The vertebrate retina first evolved some 500 million years ago in ancestral marine chordates. Since then, the eyes of different species have been tuned to best support their unique visuoecological lifestyles. Visual specializations in eye designs, large-scale inhomogeneities across the retinal surface and local circuit motifs mean that all species' retinas are unique. Computational theories, such as the efficient coding hypothesis, have come a long way towards an explanation of the basic features of retinal organization and function; however, they cannot explain the full extent of retinal diversity within and across species. To build a truly general understanding of vertebrate vision and the retina's computational purpose, it is therefore important to more quantitatively relate different species' retinal functions to their specific natural environments and behavioural requirements. Ultimately, the goal of such efforts should be to build up to a more general theory of vision

    Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism

    Full text link
    corecore