1,562 research outputs found
Flow in a slowly-tapering channel with oscillating walls
The flow of a fluid in a channel with walls inclined at an angle to each other is investigated at arbitrary Reynolds number. The flow is driven by an oscillatory motion of the wall incorporating a time-periodic displacement perpendicular to the channel centreline. The gap between the walls varies linearly with distance along the channel and is a prescribed periodic function of time. An approximate solution is constructed assuming that the angle of inclination of the walls is small. At leading order the flow corresponds to that in a channel with parallel, vertically oscillating walls examined by Hall and Papageorgiou \cite{HP}. A careful study of the governing partial differential system for the first order approximation controlling the tapering flow due to the wall inclination is conducted. It is found that as the Reynolds number is increased from zero the tapering flow loses symmetry and undergoes exponential growth in time. The loss of symmetry occurs at a lower Reynolds number than the symmetry-breaking for the parallel-wall flow. A window of asymmetric, time-periodic solutions is found at higher Reynolds number, and these are reached via a quasiperiodic transient from a given set of initial conditions. Beyond this window stability is again lost to exponentially growing solutions as the Reynolds number is increased
The prevalence of loot boxes in mobile and desktop games
Background and Aims Loot boxes are items in video games that may be bought for real-world money but provide randomized rewards. Formal similarities between loot boxes and gambling have led to concerns that they may provide a ‘gateway’ to gambling amongst children. However, the availability of loot boxes is unclear. This study aimed to determine what proportion of top-grossing video games contained loot boxes, and how many of those games were available to children. Design, setting and cases Survey of the 100 top-grossing games on both the Google Play store and the Apple App store, and the top 50 most-played games on Steam according to the data aggregator SteamSpy. Measurements The prevalence of loot boxes was measured for each platform outlined above, split by age rating. Findings A total of 58.0%of the top games on the Google Play store contained loot boxes, 59.0%of the top iPhone games contained loot boxes and 36.0% of the top games on the Steamstore contained loot boxes; 93.1% of the Android games that featured loot boxes and 94.9% of the iPhone games that featured loot boxes were deemed suitable for children aged 12+. Age ratings were more conservative for desktop games. Only 38.8% of desktop games that featured loot boxes were available to children aged 12+. Conclusions Loot boxes appear to be prevalent in video games that are deemed suitable for children, especially on mobile platforms
Utilising an in silico model to predict outcomes in senescence-driven acute liver injury
Currently liver transplantation is the only treatment option for liver disease, but organ availability cannot meet patient demand. Alternative regenerative therapies, including cell transplantation, aim to modulate the injured microenvironment from inflammation and scarring towards regeneration. The complexity of the liver injury response makes it challenging to identify suitable therapeutic targets when relying on experimental approaches alone. Therefore, we adopted a combined in vivo-in silico approach and developed an ordinary differential equation model of acute liver disease able to predict the host response to injury and potential interventions. The Mdm2fl/fl mouse model of senescence-driven liver injury was used to generate a quantitative dynamic characterisation of the key cellular players (macrophages, endothelial cells, myofibroblasts) and extra cellular matrix involved in liver injury. This was qualitatively captured by the mathematical model. The mathematical model was then used to predict injury outcomes in response to milder and more severe levels of senescence-induced liver injury and validated with experimental in vivo data. In silico experiments using the validated model were then performed to interrogate potential approaches to enhance regeneration. These predicted that increasing the rate of macrophage phenotypic switch or increasing the number of pro-regenerative macrophages in the system will accelerate the rate of senescent cell clearance and resolution. These results showcase the potential benefits of mechanistic mathematical modelling for capturing the dynamics of complex biological systems and identifying therapeutic interventions that may enhance our understanding of injury-repair mechanisms and reduce translational bottlenecks
Effect of brown and green seaweeds on diet digestibility, ruminal fermentation patterns and enteric methane emissions using the rumen simulation technique
Inclusion of the red seaweed Asparagopsis taxiformis as a feed additive, has led to significant reductions in methane (CH4) production from ruminants. However, dietary supplementation with this seaweed is negatively associated with health and environmental concerns mainly due to its bromoform content, a compound with potential carcinogenic properties. Thus, there is renewed focus on ascertaining the anti-methanogenic potential of locally grown brown and green seaweeds, which typically do not contain bromoform. The objective of this study was to investigate the effects of selected brown and green seaweeds on diet digestibility, ruminal fermentation patterns, total gas (TGP) and CH4 production in vitro, using the rumen simulation technique system. In experiment 1, Pelvetia canaliculata (PEC) was examined. In experiment 2, Cystoseira tamariscifolia (CYT), Bifurcaria bifurcata (BIB), Fucus vesiculosus (FUV), Himanthalia elongata (HIM) and Ulva intestinalis (ULI) were analysed. Ascophyllum nodosum (ASC) was included in both experiments. A diet containing A. taxiformis (ASP1; ASP2) and an unsupplemented diet (CON) were included as positive and negative controls, respectively in both experiments. All seaweeds were included at a rate of 10 g/kg dry matter (DM) into a control diet of 50:50 (w:w) forage:concentrate. The seven brown and green seaweeds assessed failed to affect absolute CH4 emissions or alter fermentation patterns. In experiment 1, seaweed treatment had no effect on diet digestibility, CH4%, CH4 mmol/d or CH4 L/d (P>0.1), however ASP1 reduced CH4 mmol/g DOM by 49% (P<0.01) relative to the control. Both ASC and ASP1 tended to increase TGP (P<0.1) relative to the control. In addition to this, the inclusion of seaweed in experiment 1 reduced the production of NH3-N (P<.0001) compared to the control. In experiment 2, seaweed treatment had no effect on diet digestibility or TGP. Both ASP2 and FUV reduced CH4% (P<0.01) but only ASP2 significantly reduced CH4 mmol/d, CH4 L/d and CH4 mmol/g DOM (P<0.05). Daily mMol butyrate was reduced by ASP2 relative to the control and most other seaweeds (P<.0001). In both experiment 1 and 2, seaweed inclusion had no effect on daily total VFA, acetate or propionate production or the acetate:propionate ratio relative to the control. To conclude, including the bromoform-free brown and green seaweeds at 10g/kg DM has no negative effects on diet digestibility or fermentation patterns but also failed to reduce the production of enteric CH4in vitro
Acid sensing by the Drosophila olfactory system.
The odour of acids has a distinct quality that is perceived as sharp, pungent and often irritating. How acidity is sensed and translated into an appropriate behavioural response is poorly understood. Here we describe a functionally segregated population of olfactory sensory neurons in the fruitfly, Drosophila melanogaster, that are highly selective for acidity. These olfactory sensory neurons express IR64a, a member of the recently identified ionotropic receptor (IR) family of putative olfactory receptors. In vivo calcium imaging showed that IR64a+ neurons projecting to the DC4 glomerulus in the antennal lobe are specifically activated by acids. Flies in which the function of IR64a+ neurons or the IR64a gene is disrupted had defects in acid-evoked physiological and behavioural responses, but their responses to non-acidic odorants remained unaffected. Furthermore, artificial stimulation of IR64a+ neurons elicited avoidance responses. Taken together, these results identify cellular and molecular substrates for acid detection in the Drosophila olfactory system and support a labelled-line mode of acidity coding at the periphery
Effect of divergence in residual methane emissions on feed intake and efficiency, growth and carcass performance, and indices of rumen fermentation and methane emissions in finishing beef cattle
peer-reviewedResidual expressions of enteric emissions favor a more equitable identification of an animal’s methanogenic potential compared with traditional measures of enteric emissions. The objective of this study was to investigate the effect of divergently ranking beef cattle for residual methane emissions (RME) on animal productivity, enteric emissions, and rumen fermentation. Dry matter intake (DMI), growth, feed efficiency, carcass output, and enteric emissions (GreenFeed emissions monitoring system) were recorded on 294 crossbred beef cattle (steers = 135 and heifers = 159; mean age 441 d (SD = 49); initial body weight (BW) of 476 kg (SD = 67)) at the Irish national beef cattle performance test center. Animals were offered a total mixed ration (77% concentrate and 23% forage; 12.6 MJ ME/kg of DM and 12% CP) ad libitum with emissions estimated for 21 d over a mean feed intake measurement period of 91 d. Animals had a mean daily methane emissions (DME) of 229.18 g/d (SD = 45.96), methane yield (MY) of 22.07 g/kg of DMI (SD = 4.06), methane intensity (MI) 0.70 g/kg of carcass weight (SD = 0.15), and RME 0.00 g/d (SD = 0.34). RME was computed as the residuals from a multiple regression model regressing DME on DMI and BW (R2 = 0.45). Animals were ranked into three groups namely high RME (>0.5 SD above the mean), medium RME (±0.5 SD above/below the mean), and low RME (>0.5 SD below the mean). Low RME animals produced 17.6% and 30.4% less (P < 0.05) DME compared with medium and high RME animals, respectively. A ~30% reduction in MY and MI was detected in low versus high RME animals. Positive correlations were apparent among all methane traits with RME most highly associated with (r = 0.86) DME. MY and MI were correlated (P < 0.05) with DMI, growth, feed efficiency, and carcass output. High RME had lower (P < 0.05) ruminal propionate compared with low RME animals and increased (P < 0.05) butyrate compared with medium and low RME animals. Propionate was negatively associated (P < 0.05) with all methane traits. Greater acetate:propionate ratio was associated with higher RME (r = 0.18; P < 0.05). Under the ad libitum feeding regime deployed here, RME was the best predictor of DME and only methane trait independent of animal productivity. Ranking animals on RME presents the opportunity to exploit interanimal variation in enteric emissions as well as providing a more equitable index of the methanogenic potential of an animal on which to investigate the underlying biological regulatory mechanisms.FACCE ERA-GA
28. The effect of phenotypically ranking beef cattle for residual methane output on daily methane emissions, intensity and animal productivity
Conference paper abstractBeef cattle ranked as having low residual methane output had lower emissions intensity and similar overall productive performance as their high emissions ranking contemporaries. The concept of residual methane output is proposed as an appropriate trait to more equitably identify animals on the basis of low emissions beef productionHorizon 202
Evolutionary trade-offs associated with loss of PmrB function in host-adapted <i>Pseudomonas aeruginosa</i>
Pseudomonas aeruginosa colonises the upper airway of cystic fibrosis (CF) patients, providing a reservoir of host-adapted genotypes that subsequently establish chronic lung infection. We previously experimentally-evolved P. aeruginosa in a murine model of respiratory tract infection and observed early-acquired mutations in pmrB, encoding the sensor kinase of a two-component system that promoted establishment and persistence of infection. Here, using proteomics, we show downregulation of proteins involved in LPS biosynthesis, antimicrobial resistance and phenazine production in pmrB mutants, and upregulation of proteins involved in adherence, lysozyme resistance and inhibition of the chloride ion channel CFTR, relative to wild-type strain LESB65. Accordingly, pmrB mutants are susceptible to antibiotic treatment but show enhanced adherence to airway epithelial cells, resistance to lysozyme treatment, and downregulate host CFTR expression. We propose that P. aeruginosa pmrB mutations in CF patients are subject to an evolutionary trade-off, leading to enhanced colonisation potential, CFTR inhibition, and resistance to host defences, but also to increased susceptibility to antibiotics.</p
Stream and slope weathering effects on organic-rich mudstone geochemistry and implications for hydrocarbon source rock assessment: a Bowland Shale case study
This study contributes to the exploration and quantification of the weathering of organic-rich mudstones under temperate climatic conditions. Bowland Shales, exposed by a stream and slope, were sampled in order to develop a model for the effects of weathering on the mudstone geochemistry, including major and trace element geochemistry, Rock-Eval pyrolysis and δ13Corg. Four weathering grades (I – IV) are defined using a visual classification scheme; visually fresh and unaltered (I), chemically altered (II, III) and ‘paper shale’ that typifies weathered mudstone on slopes (IV). Bedload abrasion in the stream exposes of visually fresh and geochemically unaltered mudstone. Natural fractures are conduits for oxidising meteoric waters that promote leaching at the millimetre scale and/or precipitation of iron oxide coatings along fracture surfaces. On the slope, bedding-parallel fractures formed (and may continue to form) in response to chemical and/or physical weathering processes. These fractures develop along planes of weakness, typically along laminae comprising detrital grains, and exhibit millimetre- and centimetre-scale leached layers and iron oxide coatings. Fracture surfaces are progressively exposed to physical weathering processes towards the outcrop surface, and results in disintegration of the altered material along fracture surfaces. Grade IV, ‘paper shale’ mudstone is chemically unaltered but represents a biased record driven by initial heterogeneity in the sedimentary fabric. Chemically weathered outcrop samples exhibit lower concentrations of both ‘free’ (S1) (up to 0.6 mgHC/g rock) and ‘bound’ (S2) (up to 3.2 mgHC/g rock) hydrocarbon, reduced total organic carbon content (up to 0.34 wt%), reduced hydrogen index (up to 58 mgHC/gTOC), increased oxygen index (up to 19 mgCO + CO2/gTOC) and increased Tmax (up to 11 °C) compared with unaltered samples. If analysis of chemically weathered samples is unavoidable, back-extrapolation of Rock-Eval parameters can assist in the estimation of pre-weathering organic compositions. Combining Cs/Cu with oxygen index is a proxy for identifying the weathering progression from fresh material (I) to ‘paper shale’ (IV). This study demonstrates that outcrop samples in temperate climates can provide information for assessing hydrocarbon potential of organic-rich mudstones
- …