10,537 research outputs found
High strength alloy for immediate temperature, 24 24 to 704 C (75 to 1300 F), applications
Application of prealloyed powder technology to the NASA-TRW-VI-A alloy shows the potential of highly alloyed normally cast superalloys for achieving superior properties at intermediate temperatures
Method of forming articles of manufacture from superalloy powders
A highly alloyed superalloy material is obtained using prealloyed powders. The material is easily shaped at high temperatures when it becomes superplastic because of its particular microstructure
Revised time-of-flight calculations for high-latitude geomagnetic pulsations using a realistic magnetospheric magnetic field model
We present a simple time-of-flight analysis of Alfvén pulsations standing on closed terrestrial magnetic field lines. The technique employed in this study in order to calculate the characteristic period of such oscillations builds upon earlier time-of-flight estimates via the implementation of a more recent magnetospheric magnetic field model. In this case the model employed is the Tsyganenko (1996) field model, which includes realistic magnetospheric currents and the consequences of the partial penetration of the interplanetary magnetic field into the dayside magnetopause. By employing a simple description of magnetospheric plasma density, we are therefore able to estimate the period of standing Alfvén waves on geomagnetic field lines over a significantly wider range of latitudes and magnetic local times than in previous studies. Furthermore, we investigate the influence of changing season and upstream interplanetary conditions upon the period of such pulsations. Finally, the eigenfrequencies of magnetic field lines computed by the time-of-flight technique are compared with corresponding numerical solutions to the wave equation and experimentally observed pulsations on geomagnetic field lines
Transonic flutter study of a wind-tunnel model of a supercritical wing with/without winglet
The model was a 1/6.5-size, semipan version of a wing proposed for an executive-jet-transport airplane. The model was tested with a normal wingtip, a wingtip with winglet, and a normal wingtip ballasted to simulate the winglet mass properties. Flutter and aerodynamic data were acquired at Mach numbers (M) from 0.6 to 0.95. The measured transonic flutter speed boundary for each wingtip configuration had roughly the same shape with a minimum flutter speed near M=0.82. The winglet addition and wingtip mass ballast decreased the wing flutter speed by about 7 and 5 percent, respectively; thus, the winglet effect on flutter was more a mass effect than an aerodynamic effect
Method of heat treating a formed powder product material
Heat treating a product material of prealloyed powders after shaping by superplastic deformation restores the ability of the material to resist deformation at high temperatures. Heat treating is accomplished by heating to a temperature between the solidus and liquidus with the application of isostatic pressure to close any voids. This pressure may be simultaneously applied while the material is at the heat treating temperature. The pressure may also be applied when the material cools to a temperature between that at which it is shaped and the solidus
High-temperature strength of prealloyed-powder products increased by heat/pressure treatment
Heat treatment process involves heating products to a temperature above the solidus, and subsequently applying pressure at a temperature below the solidus. Technique can be modified to one step process involving simultaneous application if both high pressure and heat. Process is not limited to cobalt-base alloys
Trajectory and propulsion characteristics of comet rendezvous opportunities
Trajectory and propulsion characteristics of spacecraft rendezvous mission opportunities to comets during 1975 to 199
Application of directional solidification to a NASA nickel-base alloy /TAZ-8B/
Directional solidification of nickel base alloy TAZ-8B to enhance potential for advanced gas turbine engine application
The lunar phases of dust grains orbiting Fomalhaut
Optical images of the nearby star Fomalhaut show a ring of dust orbiting the
central star. This dust is in many respects expected to be similar to the
zodiacal dust in the solar system. The ring displays a clear brightness
asymmetry, attributed to asymmetric scattering of the central starlight by the
circumstellar dust grains. Recent measurements show that the bright side of the
Fomalhaut ring is oriented away from us. This implies that the grains in this
system scatter most of the light in the backward direction, in sharp contrast
to the forward-scattering nature of the grains in the solar system. In this
letter, we show that grains considerably larger than those dominating the solar
system zodiacal dust cloud provide a natural explanation for the apparent
backward scattering behavior. In fact, we see the phases of the dust grains in
the same way as we can observe the phases of the Moon and other large solar
system bodies. We outline how the theory of the scattering behavior of
planetesimals can be used to explain the Fomalhaut dust properties. This
indicates that the Fomalhaut dust ring is dominated by very large grains. The
material orbiting Fomalhaut, which is at the transition between dust and
planetesimals, can, with respect to their optical behavior, best be described
as micro-asteroids.Comment: Accepted for publication in A&
Evaluation of a cobalt-base alloy, HS-31, made by extrusion of prealloyed powders
Evaluation of cobalt base alloy made by extrusion of prealloyed powder
- …