9 research outputs found
Container Corporation of America v. Franchise Tax Board: The Supreme Court Encourages Apportionment Taxation
A Prospective Study of LINE-1DNA Methylation and Development of Adiposity in School-Age Children
Prepubertal start of father's smoking and increased body fat in his sons: further characterisation of paternal transgenerational responses
Despite interest in the idea that transgenerational effects of adverse exposures might contribute to population health trends, there are few human data. This non-genetic inheritance is all the more remarkable when transmission is down the male-line as reported in a historical Swedish study, where the paternal grandfather's food supply in mid childhood was associated with the mortality rate in his grandsons. Using the Avon Longitudinal Study of Parents and Children's questionnaire data on smoking and smoking onset from 9886 fathers, we examined the growth of their children from 7–17 years. Adjusting for potential confounders, we assessed associations between body mass index (BMI), waist circumference, total fat mass and lean mass with the age at which the father had started smoking regularly. Of 5376 fathers who reported having ever smoked, 166 reported regular smoking <11 years of age. Before adjustment, those offspring whose fathers started smoking <11 years had the highest mean BMIs at each age tested. The adjusted mean differences in BMI, waist circumference and total fat mass in those sons whose fathers started smoking <11 years, compared with all other sons, increased with age, being significantly greater from 13 years onwards. There were no significant BMI associations in daughters, but they showed a reduction in total lean mass. Our results highlight the importance of the developmental timing of the paternal exposure as well as gender differences in offspring outcomes. Smoking by boys in mid childhood may contribute to obesity in adolescent boys of the next generation
Prepubertal start of father’s smoking and increased body fat in his sons: further characterisation of paternal transgenerational responses
Presence of an epigenetic signature of prenatal cigarette smoke exposure in childhood
Prenatal exposure to tobacco smoke has lifelong health consequences. Epigenetic signatures such as differences in DNA methylation (DNAm) may be a biomarker of exposure and, further, might have functional significance for how in utero tobacco exposure may influence disease risk. Differences in infant DNAm associated with maternal smoking during pregnancy have been identified. Here we assessed whether these infant DNAm patterns are detectible in early childhood, whether they are specific to smoking, and whether childhood DNAm can classify prenatal smoke exposure status. Using the Infinium 450 K array, we measured methylation at 26 CpG loci that were previously associated with prenatal smoking in infant cord blood from 572 children, aged 3–5, with differing prenatal exposure to cigarette smoke in the Study to Explore Early Development (SEED). Striking concordance was found between the pattern of prenatal smoking associated DNAm among preschool aged children in SEED and those observed at birth in other studies. These DNAm changes appear to be tobacco-specific. Support vector machine classification models and 10-fold cross-validation were applied to show classification accuracy for childhood DNAm at these 26 sites as a biomarker of prenatal smoking exposure. Classification models showed prenatal exposure to smoking can be assigned with 81% accuracy using childhood DNAm patterns at these 26 loci. These findings support the potential for blood-derived DNAm measurements to serve as biomarkers for prenatal exposure
