531 research outputs found

    Symanzik flow on HISQ ensembles

    Full text link
    We report on a scale determination with gradient-flow techniques on the Nf=2+1+1N_f = 2 + 1 + 1 HISQ ensembles generated by the MILC collaboration. The lattice scale w0/aw_0/a, originally proposed by the BMW collaboration, is computed using Symanzik flow at four lattice spacings ranging from 0.15 to 0.06 fm. With a Taylor series ansatz, the results are simultaneously extrapolated to the continuum and interpolated to physical quark masses. We give a preliminary determination of the scale w0w_0 in physical units, along with associated systematic errors, and compare with results from other groups. We also present a first estimate of autocorrelation lengths as a function of flowtime for these ensembles.Comment: 7 pages, 6 pdf figures, 2 tables, presented at the 31st International Symposium on Lattice Field Theory (Lattice 2013), 29 July - 3 August 2013, Mainz, German

    Visualization of semileptonic form factors from lattice QCD

    Full text link
    Comparisons of lattice-QCD calculations of semileptonic form factors with experimental measurements often display two sets of points, one each for lattice QCD and experiment. Here we propose to display the output of a lattice-QCD analysis as a curve and error band. This is justified, because lattice-QCD results rely in part on fitting, both for the chiral extrapolation and to extend lattice-QCD data over the full physically allowed kinematic domain. To display an error band, correlations in the fit parameters must be taken into account. For the statistical error, the correlation comes from the fit. To illustrate how to address correlations in the systematic errors, we use the Becirevic-Kaidalov parametrization of the D -> pi l nu and D -> K l nu form factors, and a analyticity-based fit for the B -> pi l nu form factor f_+.Comment: 6 pp; v2 conforms with published version (one additional sentence and reference to clarify a point

    Short-distance matrix elements for D0-meson mixing from Nf=2+1 lattice QCD

    Get PDF
    We calculate in three-flavor lattice QCD the short-distance hadronic matrix elements of all five ΔC=2 four-fermion operators that contribute to neutral D-meson mixing both in and beyond the Standard Model. We use the MILC Collaboration’s Nf=2+1 lattice gauge-field configurations generated with asqtad-improved staggered sea quarks. We also employ the asqtad action for the valence light quarks and use the clover action with the Fermilab interpretation for the charm quark. We analyze a large set of ensembles with pions as light as lattice gauge-field configurations generated with asqtad-improved staggered sea quarks. We also employ the asqtad action for the valence light quarks and use the clover action with the Fermilab interpretation for the charm quark. We analyze a large set of ensembles with pions as light as Mπ ≈ 180 MeV and lattice spacings as fine as a ≈ 0.045 fm, thereby enabling good control over the extrapolation to the physical pion mass and continuum limit. We obtain for the matrix elements in the MS−NDR scheme using the choice of evanescent operators proposed by Beneke et al., evaluated at 3 GeV, ⟨D0|Oi|¯D0⟩ = {0.0805(55)16),−0.1561(70)(31), 0.0464(31)(9), 0.2747(129)(55), 0.1035(71)(21)} GeV4 (i=1–5). The errors shown are from statistics and lattice systematics, and the omission of charmed sea quarks, respectively. To illustrate the utility of our matrix-element results, we place bounds on the scale of CP-violating new physics in D0 mixing, finding lower limits of about 10–50×103 TeV for couplings of O(1). To enable our results to be employed in more sophisticated or model-specific phenomenological studies, we provide the correlations among our matrix-element results. For convenience, we also present numerical results in the other commonly used scheme of Buras, Misiak, and Urban
    • …
    corecore