63 research outputs found

    Selective Photothermolysis of Cutaneous Pigmentation by Q-switched Nd: YAG Laser Pulses at 1064, 532. and 355nm

    Get PDF
    Exposure of skin to nanosecond-domain laser pulses affects the pigmentary system by a process called selective photothermolysis, in which melanosomes and pigmented cells are preferentially altered. Due to the broad absorption spectrum of melanin, this effect may occur with wavelengths that penetrate to vastly different depths within tissue, potentially producing different biologic responses. The effects of single near-ultraviolet (355nm), visible (532nm), and near infrared (1064nm) pulses of 10–12nsec duration were determined in guinea pig skin using gross, histologic, and electron microscopic observations. Threshold response in pigmented skin was a transient immediate ash-white discoloration, requiring 0.11, 0.20 and 1.0J/cm2, at 355, 532, and 1064 nm, respectively. At each wavelength, melanosomes were reputed within keratinocytes and melanocytes, with cytoplasmic and nuclear alterations. Delayed epidermal depigmentation occurred, followed by gradual repigmentation. Deep follicular cells were altered only at 532 and 1064 nm, which produced permanent leukotrichia. The action spectrum for threshold response was consistent with mechanisms implied by selective photothermolysis. These data may be useful for consideration of treatment for cutaneous pigmentation abnormalities or unwanted follicular pigmentation, or both

    A JAR of Chirps: The Gymnotiform Chirp Can Function as Both a Communication Signal and a Jamming Avoidance Response

    Get PDF
    The weakly electric gymnotiform fish produce a rhythmic electric organ discharge (EOD) used for communication and active electrolocation. The EOD frequency is entrained to a medullary pacemaker nucleus. During communication and exploration, this rate can be modulated by a pre-pacemaker network, resulting in specific patterns of rate modulation, including stereotyped communication signals and dynamic interactions with conspecifics known as a Jamming Avoidance Response (JAR). One well-known stereotyped signal is the chirp, a brief upward frequency sweep usually lasting less than 500 ms. The abrupt change in frequency has dramatic effects on phase precession between two signalers. We report here on chirping in Brachyhypopmus cf. sullivani, Microsternarchus cf. bilineatus Lineage C, and Steatogenys cf. elegans during conspecific playback experiments. Microsternarchus also exhibits two behaviors that include chirp-like extreme frequency modulations, EOD interruptions with hushing silence and tumultuous rises, and these are described in terms of receiver impact. These behaviors all have substantial impact on interference caused by conspecifics and may be a component of the JAR in some species. Chirps are widely used in electronic communications systems, sonar, and other man-made active sensing systems. The brevity of the chirp, and the phase disruption it causes, makes chirps effective as attention-grabbing or readiness signals. This conforms to the varied assigned functions across gymnotiforms, including pre-combat aggressive or submissive signals or during courtship and mating. The specific behavioral contexts of chirp expression vary across species, but the physical structure of the chirp makes it extremely salient to conspecifics. Chirps may be expected in a wide range of behavioral contexts where their function depends on being noticeable and salient. Further, in pulse gymnotiforms, the chirp is well structured to comprise a robust jamming signal to a conspecific receiver if specifically timed to the receiver’s EOD cycle. Microsternarchus and Steatogenys exploit this feature and include chirps in dynamic jamming avoidance behaviors. This may be an evolutionary re-use of a circuitry for a specific signal in another context. © Copyright © 2019 Field, Petersen, Alves-Gomes and Braun

    Refractive index of dye solution

    Full text link

    Lie algebra and molecular shell model. II

    Full text link

    Small scale parallel manipulator kinematics for flexible snake robot application

    Full text link
    A small-scale parallel manipulator is designed in this paper. The kinematic analysis of the manipulator is also elucidated for the development of multilinked snake robot. A compliant central colum is used to connect two parallel platforms of Incompletely Restrained Positioning Mechanism (IRPM). The compliant column allows the configuration to achieve 3 DOFs with 3 tendons of active materials connected between the upper and loer platform of the mechanism. In particular, this investigation focuses on the angular deflection of the upper platform with respect to the lower platform. The application here is aimed at developing an active linkable module that can be connected to one another so as to form a “snake robot” of sorts. For an arbitrary angular displacement of the platforms, the corresponding length of each tendon can be determined through inverse kinematics. From the experimental result, the extreme bending of the central column plane of 30° angular displacement with the of the horizontal axis
    corecore