36,089 research outputs found
Reversal of the circulation of a vortex by quantum tunneling in trapped Bose systems
We study the quantum dynamics of a model for a vortex in a Bose gas with
repulsive interactions in an anisotropic, harmonic trap. By solving the
Schr\"odinger equation numerically, we show that the circulation of the vortex
can undergo periodic reversals by quantum-mechanical tunneling. With increasing
interaction strength or particle number, vortices become increasingly stable,
and the period for reversals increases. Tunneling between vortex and antivortex
states is shown to be described to a good approximation by a superposition of
vortex and antivortex states (a Schr\"odinger cat state), rather than the
mean-field state, and we derive an analytical expression for the oscillation
period. The problem is shown to be equivalent to that of the two-site Bose
Hubbard model with attractive interactions.Comment: 5 pages, 5 figures; published in Phys. Rev. A, Rapid Communication
Electron screening in the liquid-gas mixed phases of nuclear matter
Screening effects of electrons on inhomogeneous nuclear matter, which
includes spherical, slablike, and rodlike nuclei as well as spherical and
rodlike nuclear bubbles, are investigated in view of possible application to
cold neutron star matter and supernova matter at subnuclear densities. Using a
compressible liquid-drop model incorporating uncertainties in the surface
tension, we find that the energy change due to the screening effects broadens
the density region in which bubbles and nonspherical nuclei appear in the phase
diagram delineating the energetically favorable shape of inhomogeneous nuclear
matter. This conclusion is considered to be general since it stems from a
model-independent feature that the electron screening acts to decrease the
density at which spherical nuclei become unstable against fission and to
increase the density at which uniform matter becomes unstable against proton
clustering.Comment: 12 pages, 8 figures, accepted for publication in Physical Review
Chemical Evolution in the Large Magellanic Cloud
We present a new input parameter set of the Pagel model (Pagel & Tautvaiien 1998) for the Large Magellanic Cloud (LMC) in order
to reproduce the observations, including the star formation rate (SFR) history.
It is concluded that the probability for (3-8) stars to explode as
SNe Ia has to be quite high () in the LMC. As a result, a steep
initial mass function (IMF) slope and existence of the outflow are not needed
in order to attain the low [O/Fe] ratio in the LMC. As for the current
supernova ratio, a high ratio () is concluded by the new parameter
set, which is consistent with the recent X-ray observations.Comment: 20 pages, gzipped tar file including LaTeX text and 8 postscript
figures. submitted to Publication of the Astronomical Society of Japa
A Maximum Mass-to-Size Ratio in Scalar-Tensor Theories of Gravity
We derive a modified Buchdahl inequality for scalar-tensor theories of
gravity. In general relativity, Buchdahl has shown that the maximum value of
the mass-to-size ratio, , is 8/9 for static and spherically symmetric
stars under some physically reasonable assumptions. We formally apply
Buchdahl's method to scalar-tensor theories and obtain theory-independent
inequalities. After discussing the mass definition in scalar-tensor theories,
these inequalities are related to a theory-dependent maximum mass-to-size
ratio. We show that its value can exceed not only Buchdahl's limit, 8/9, but
also unity, which we call {\it the black hole limit}, in contrast to general
relativity. Next, we numerically examine the validity of the assumptions made
in deriving the inequalities and the applicability of our analytic results. We
find that the assumptions are mostly satisfied and that the mass-to-size ratio
exceeds both Buchdahl's limit and the black hole limit. However, we also find
that this ratio never exceeds Buchdahl's limit when we impose the further
condition, , on the density, , and pressure, , of the
matter.Comment: 23 pages, 13 figures and 1 tabl
Driving a car with custom-designed fuzzy inferencing VLSI chips and boards
Vehicle control in a-priori unknown, unpredictable, and dynamic environments requires many calculational and reasoning schemes to operate on the basis of very imprecise, incomplete, or unreliable data. For such systems, in which all the uncertainties can not be engineered away, approximate reasoning may provide an alternative to the complexity and computational requirements of conventional uncertainty analysis and propagation techniques. Two types of computer boards including custom-designed VLSI chips were developed to add a fuzzy inferencing capability to real-time control systems. All inferencing rules on a chip are processed in parallel, allowing execution of the entire rule base in about 30 microseconds, and therefore, making control of 'reflex-type' of motions envisionable. The use of these boards and the approach using superposition of elemental sensor-based behaviors for the development of qualitative reasoning schemes emulating human-like navigation in a-priori unknown environments are first discussed. Then how the human-like navigation scheme implemented on one of the qualitative inferencing boards was installed on a test-bed platform to investigate two control modes for driving a car in a-priori unknown environments on the basis of sparse and imprecise sensor data is described. In the first mode, the car navigates fully autonomously, while in the second mode, the system acts as a driver's aid providing the driver with linguistic (fuzzy) commands to turn left or right and speed up or slow down depending on the obstacles perceived by the sensors. Experiments with both modes of control are described in which the system uses only three acoustic range (sonar) sensor channels to perceive the environment. Simulation results as well as indoors and outdoors experiments are presented and discussed to illustrate the feasibility and robustness of autonomous navigation and/or safety enhancing driver's aid using the new fuzzy inferencing hardware system and some human-like reasoning schemes which may include as little as six elemental behaviors embodied in fourteen qualitative rules
511 keV line and diffuse gamma rays from moduli
We obtain the spectrum of gamma ray emissions from the moduli whose decay
into accounts for the 511 keV line observed by SPI/INTERGRAL. The
moduli emit gamma rays through internal bremsstrahlung, and also decay directly
into two gammas via tree and/or one-loop diagrams. We show that the internal
bremsstahlung constrains the mass of the moduli below MeV
model-independently. On the other hand, the flux of two gammas directly decayed
from the moduli through one loop diagrams will exceed the observed galactic
diffuse gamma-ray background if the moduli mass exceeds MeV in the
typical situation. Moreover, forthcoming analysis of SPI data in the range of
1-8 MeV may detect the line emisson with the energy half the moduli mass in the
near future, which confirms the decaying moduli scenario.Comment: 6 pages, 5 figures, published versio
Single-electron transistors in electromagnetic environments
The current-voltage (I-V) characteristics of single-electron transistors
(SETs) have been measured in various electromagnetic environments. Some SETs
were biased with one-dimensional arrays of dc superconducting quantum
interference devices (SQUIDs). The purpose was to provide the SETs with a
magnetic-field-tunable environment in the superconducting state, and a
high-impedance environment in the normal state. The comparison of SETs with
SQUID arrays and those without arrays in the normal state confirmed that the
effective charging energy of SETs in the normal state becomes larger in the
high-impedance environment, as expected theoretically. In SETs with SQUID
arrays in the superconducting state, as the zero-bias resistance of the SQUID
arrays was increased to be much larger than the quantum resistance R_K = h/e^2
= 26 kohm, a sharp Coulomb blockade was induced, and the current modulation by
the gate-induced charge was changed from e periodic to 2e periodic at a bias
point 0<|V|<2D_0/e, where D_0 is the superconducting energy gap. The author
discusses the Coulomb blockade and its dependence on the gate-induced charge in
terms of the single Josephson junction with gate-tunable junction capacitance.Comment: 8 pages with 10 embedded figures, RevTeX4, published versio
Efficient method for simulating quantum electron dynamics under the time dependent Kohn-Sham equation
A numerical scheme for solving the time-evolution of wave functions under the
time dependent Kohn-Sham equation has been developed. Since the effective
Hamiltonian depends on the wave functions, the wave functions and the effective
Hamiltonian should evolve consistently with each other. For this purpose, a
self-consistent loop is required at every time-step for solving the
time-evolution numerically, which is computationally expensive. However, in
this paper, we develop a different approach expressing a formal solution of the
TD-KS equation, and prove that it is possible to solve the TD-KS equation
efficiently and accurately by means of a simple numerical scheme without the
use of any self-consistent loops.Comment: 5 pages, 3 figures. Physical Review E, 2002, in pres
Quantum Effects in Small-Capacitance Single Josephson Junctions
We have measured the current-voltage (I-V) characteristics of
small-capacitance single Josephson junctions at low temperatures (T=0.02-0.6
K), where the strength of the coupling between the single junction and the
electromagnetic environment was controlled with one-dimensional arrays of dc
SQUIDs. The single-junction I-V curve is sensitive to the impedance of the
environment, which can be tuned IN SITU. We have observed Coulomb blockade of
Cooper-pair tunneling and even a region of negative differential resistance,
when the zero-bias resistance R_0' of the SQUID arrays is much higher than the
quantum resistance R_K = h/e^2 = 26 kohm. The negative differential resistance
is evidence of coherent single-Cooper-pair tunneling within the theory of
current-biased single Josephson junctions. Based on the theory, we have
calculated the I-V curves numerically in order to compare with the experimental
ones at R_0' >> R_K. The numerical calculation agrees with the experiments
qualitatively. We also discuss the R_0' dependence of the
single-Josephson-junction I-V curve in terms of the superconductor-insulator
transition driven by changing the coupling to the environment.Comment: 11 pages with 14 embedded figures, RevTeX4, final versio
- …