49,046 research outputs found

    Reversal of the circulation of a vortex by quantum tunneling in trapped Bose systems

    Full text link
    We study the quantum dynamics of a model for a vortex in a Bose gas with repulsive interactions in an anisotropic, harmonic trap. By solving the Schr\"odinger equation numerically, we show that the circulation of the vortex can undergo periodic reversals by quantum-mechanical tunneling. With increasing interaction strength or particle number, vortices become increasingly stable, and the period for reversals increases. Tunneling between vortex and antivortex states is shown to be described to a good approximation by a superposition of vortex and antivortex states (a Schr\"odinger cat state), rather than the mean-field state, and we derive an analytical expression for the oscillation period. The problem is shown to be equivalent to that of the two-site Bose Hubbard model with attractive interactions.Comment: 5 pages, 5 figures; published in Phys. Rev. A, Rapid Communication

    The central simple modules of Artinian Gorenstein algebras

    Full text link
    Let A be a standard graded Artinian algebra over a field of characteristic zero and let z be a linear form in A. We define the central simple modules for each such pair (A, z). Assume that A is Gorenstein. Then we prove that A has the strong Lefschetz property if and only if there exists a linear form z in A such that all central simple modules of the pair (A,z) have the strong Lefschetz property. In the course of proof we need to extend the definition of the strong Lefschetz property to finite graded modules over graded Artinian algebra, which previously was defined only for standard graded Artinian algebras.Comment: 20 pages, To be published in Journal of Pure and Applied Algebr

    Superfluid Density of Neutrons in the Inner Crust of Neutron Stars: New Life for Pulsar Glitch Models

    Full text link
    Calculations of the effects of band structure on the neutron superfluid density in the crust of neutron stars made under the assumption that the effects of pairing are small [N. Chamel, Phys. Rev. C 85, 035801 (2012)] lead to moments of inertia of superfluid neutrons so small that the crust alone is insufficient to account for the magnitude of neutron star glitches. Inspired by earlier work on ultracold atomic gases in an optical lattice, we investigate fermions with attractive interactions in a periodic lattice in the mean-field approximation. The effects of band structure are suppressed when the pairing gap is of order or greater than the strength of the lattice potential. By applying the results to the inner crust of neutron stars, we conclude that the reduction of the neutron superfluid density is considerably less than previously estimated and, consequently, it is premature to rule out models of glitches based on neutron superfluidity in the crust.Comment: 5 pages, 3 figure

    Asymptotic Learning Curve and Renormalizable Condition in Statistical Learning Theory

    Full text link
    Bayes statistics and statistical physics have the common mathematical structure, where the log likelihood function corresponds to the random Hamiltonian. Recently, it was discovered that the asymptotic learning curves in Bayes estimation are subject to a universal law, even if the log likelihood function can not be approximated by any quadratic form. However, it is left unknown what mathematical property ensures such a universal law. In this paper, we define a renormalizable condition of the statistical estimation problem, and show that, under such a condition, the asymptotic learning curves are ensured to be subject to the universal law, even if the true distribution is unrealizable and singular for a statistical model. Also we study a nonrenormalizable case, in which the learning curves have the different asymptotic behaviors from the universal law

    The Weak and Strong Lefschetz Properties for Artinian K-Algebras

    Full text link
    Let A = bigoplus_{i >= 0} A_i be a standard graded Artinian K-algebra, where char K = 0. Then A has the Weak Lefschetz property if there is an element ell of degree 1 such that the multiplication times ell : A_i --> A_{i+1} has maximal rank, for every i, and A has the Strong Lefschetz property if times ell^d : A_i --> A_{i+d} has maximal rank for every i and d. The main results obtained in this paper are the following. 1) EVERY height three complete intersection has the Weak Lefschetz property. (Our method, surprisingly, uses rank two vector bundles on P^2 and the Grauert-Mulich theorem.) 2) We give a complete characterization (including a concrete construction) of the Hilbert functions that can occur for K-algebras with the Weak or Strong Lefschetz property (and the characterization is the same one). 3) We give a sharp bound on the graded Betti numbers (achieved by our construction) of Artinian K-algebras with the Weak or Strong Lefschetz property and fixed Hilbert function. This bound is again the same for both properties. Some Hilbert functions in fact FORCE the algebra to have the maximal Betti numbers. 4) EVERY Artinian ideal in K[x,y] possesses the Strong Lefschetz property. This is false in higher codimension.Comment: To appear in J. Algebr

    Electron screening in the liquid-gas mixed phases of nuclear matter

    Full text link
    Screening effects of electrons on inhomogeneous nuclear matter, which includes spherical, slablike, and rodlike nuclei as well as spherical and rodlike nuclear bubbles, are investigated in view of possible application to cold neutron star matter and supernova matter at subnuclear densities. Using a compressible liquid-drop model incorporating uncertainties in the surface tension, we find that the energy change due to the screening effects broadens the density region in which bubbles and nonspherical nuclei appear in the phase diagram delineating the energetically favorable shape of inhomogeneous nuclear matter. This conclusion is considered to be general since it stems from a model-independent feature that the electron screening acts to decrease the density at which spherical nuclei become unstable against fission and to increase the density at which uniform matter becomes unstable against proton clustering.Comment: 12 pages, 8 figures, accepted for publication in Physical Review
    corecore