3 research outputs found

    A novel single amino acid deletion impairs fibronectin function and causes familial glomerulopathy with fibronectin deposits: case report of a family

    Full text link
    Abstract Background Glomerulopathy with fibronectin deposits is an autosomal dominant disease associated with proteinuria, hematuria, hypertension and renal function decline. Forty percent of the cases are caused by mutations in FN1, the gene that encodes fibronectin. Case presentation This report describes two cases of Glomerulopathy with fibronectin deposits, involving a 47-year-old father and a 14-year-old son. The renal biopsies showed glomeruli with endocapillary hypercellularity and large amounts of mesangial and subendothelial eosinophilic deposits. Immunohistochemistry for fibronectin was markedly positive. Whole exome sequencing identified a novel FN1 mutation that leads to an amino-acid deletion in both patients (Ile1988del), a variant that required primary amino-acid sequence analysis for assessment of pathogenicity. Our primary sequence analyses revealed that Ile1988 is very highly conserved among relative sequences and is positioned in a C-terminal FN3 domain containing heparin- and fibulin-1-binding sites. This mutation was predicted as deleterious and molecular mechanics simulations support that it can change the tertiary structure and affect the complex folding and its molecular functionality. Conclusion The current report not only documents the occurrence of two GFND cases in an affected family and deeply characterizes its anatomopathological features but also identifies a novel pathogenic mutation in FN1, analyzes its structural and functional implications, and supports its pathogenicity.https://deepblue.lib.umich.edu/bitstream/2027.42/152212/1/12882_2019_Article_1507.pd

    Schistosoma mansoni infection as a trigger to collapsing glomerulopathy in a patient with high-risk APOL1 genotype.

    No full text
    BackgroundSchistosoma mansoni schistosomiasis (SM) remains a public health problem in Brazil. Renal involvement is classically manifested as a glomerulopathy, most often membranoproliferative glomerulonephritis or focal and segmental glomerulosclerosis. We report a case of collapsing glomerulopathy (CG) associated with SM and high-risk APOL1 genotype (HRG).Case reportA 35-year-old male was admitted for hypertension and an eight-month history of lower-limb edema, foamy urine, and increased abdominal girth. He had a recent diagnosis of hepatosplenic SM, treated with praziquantel, without clinical improvement. Laboratory tests revealed serum creatinine 1.89mg/dL, blood urea nitrogen (BUN) 24mg/dL, albumin 1.9g/dL, cholesterol 531mg/dL, low-density lipoprotein 426mg/dL, platelets 115000/mm3, normal C3/C4, antinuclear antibody (ANA), rheumatoid factor (RF), and antineutrophil cytoplasmic antibodies (ANCA), negative serologies for hepatitis C virus (HCV) and human immunodeficiency virus (HIV), HBsAg negative and AntiHBc IgG positive, no hematuria or leukocyturia, 24 hour proteinuria 6.56g and negative serum and urinary immunofixation. Kidney biopsy established the diagnosis of CG. A treatment with prednisone was started without therapeutic response, progressing to end-stage kidney disease 19 months later. Molecular genetics investigation revealed an HRG.ConclusionsThis is the first report of CG associated with SM in the setting of an HRG. This case highlights the two-hit model as a mechanism for CG pathogenesis, where the high-risk APOL1 genotype exerts a susceptibility role and SM infection serves as a trigger to CG
    corecore